双效双重热化学吸附制冷性能实验研究
建立了基于吸附.再吸附原理和内部回热技术的双效双重热化学吸附制冷实验系统,对其可行性及工作性能进行了实验研究。测试结果表明:双效双重热化学吸附制冷热力循环技术用于制冷空调领域是完全可行的,在每次循环过程中由外界热源输入一次高温解吸热叮实现四次冷量输出;当采用NiCl2为高温盐吸附剂、MnCl2为中温盐吸附剂、BaCl2为低温盐吸附剂、NH,为制冷剂时,在加热温度为265℃、制冷温度为15℃、冷却温度为30℃的工况下,双效双重热化学吸附制冷循环的COP达到1.1。在此基础上分析了吸附制冷阶段和再吸附制冷阶段冷量输出过程的制冷功率变化特性,发现再吸附过程吸附反应强于吸附反应。
两相流喷射器流动模型研究
研究了压缩/喷射制冷系统中两相流喷射器内的射流发展过程,沿喷射器内部射流的流动方向分段对射流压力调整过程、射流混合、均匀过程和扩压过程进行建模,得到喷射器的引射比和出口背压随冷凝温度与蒸发温度的变化特性。模型的预测结果与实验测试结果在变化趋势上完全一致,压缩/喷射制冷循环中的冷凝温度越大,喷射器的引射比和出口背压越大,节能效果越好;蒸发温度存在一个最佳值,使得引射比最大,出口背压增大效果较好。
两级双效溴化锂制冷-热泵复合循环
在热电冷联产系统中,溴化锂吸收式制冷机在制冷过程中排放了大量的废热,这些废热品味低,难以直接回收利用。在此提出了两级双效溴化锂制冷-热泵复合循环,该循环具有冷凝温度较高的特点,便于直接回收冷凝排放热。系统以背压汽轮机的背压蒸汽为热源,制冷的同时利用循环所排出的废热加热锅炉补充水至较高温度。以具有相同功效的双效溴冷机与单效溴化锂热泵联合运行作为对比循环,制冷-热泵复合循环系统省去了一台蒸发器与冷凝器,减少了两个换热温差,并且通过热力计算、能量分析和分析表明,该循环的能量利用率与效率均有很大的提高,效率比对比循环提高了45%。
跨临界CO2两相流引射制冷系统性能实验研究
对跨临界CO2两相流引射制冷系统性能进行了实验,分析了工况及引射器几何参数对系统性能的影响,结果表明:在实验工况范围内,跨临界CO2两相流引射制冷系统制冷量和COP随气体冷却器压力的升高而升高,随气体冷却器出口温度的升高而降低。对于使用不同喉部直径喷嘴的系统,在相同工况下,引射器喷嘴喉部直径较大的系统的性能较好。对于使用不同直径混合室的系统,随着气体冷却器压力的升高,使用小直径混合室的系统COP变化较大;当气体冷却器压力较低时,使用大直径混合室的系统COP较高,而当气体冷却器压力较高时,使用小混合室直径的系统性能较好。在相同工况下,与传统跨临界CO2循环进行比较,两相流引射制冷循环系统COP最大可提高14%。
低温室效应HCFCs替代物性能分析
在阐述目前国内外HCFCs替代形势的基础上,对热泵空调及冷冻冷藏系统典型HCFCs制冷剂R22和其传统替代制冷剂(R410A,R407C,R404A,R507A),以及低温室效应R22替代物(R161,R290,RTJU4,R32,R717及R1234yf)的热力性能、循环性能及其可燃特性进行对比与分析。结果表明,R161,R290,RTJU4,R717,R32不仅具有零ODP较低GWP值的优势,其热力学及传热学特性也优于传统的HCFCs替代物,其中部分工质在一定的应用条件下具有较好的循环性能。R32,R1234yf和RTJU4的可燃性较小;RTJU4在系统循环性能上具有较明显的优势;R717具有较好热力学、传热学和循环特性,经进一步的系统和部件改进也具有较强的替代潜力。
使用电子膨胀阀的热泵热水器动态性能数值模拟与实验研究
在不同的环境工况下对使用电子膨胀阀的热泵热水器系统动态性能进行了实验研究,测量了电子膨胀阀不同开度条件下热泵热水器的动态制热量、性能系数等参数,分析了电子膨胀阀开度对热泵热水器性能的影响。同时,对热泵热水器系统动态性能进行了数值模拟,并将模拟结果与实验结果进行了比较。结果表明:在电子膨胀阀某一开度下,系统性能系数存在一个最大值;对于电子膨胀阀不同开度,在加热初始阶段,电子膨胀阀开度较大时系统COP和制热量较高,而在加热后期则恰恰相反。通过在不同加热时段使用电子膨胀阀不同开度实验发现,系统性能得到显著提高,最大可提高7.6%。热泵系统性能数值模拟与实验结果的变化趋势一致,说明数学模型和计算方法是可行的。
太空辐射致冷空调装置的实验研究
针对辐射致冷进行了可行性研究。首先介绍了辐射致冷的原理和实现方法,然后利用红外发射率测定仪测定了碳黑、TiO2、NaCl晶体、聚酯(PET)薄膜与聚四氟乙烯(PTFE)薄膜的红外发射率,并间接测定了低密度聚乙烯薄膜(LDPE)对于不同材料的透过率。最后研制了利用空气为冷媒介质的辐射致冷实验装置,进行了夜间静态和连续抽气实验。实验结果表明:分别用PET薄膜和PTFE薄膜作为辐射体,静态实验时,可获得与环境的最大温差分别为11℃和9℃;连续抽气实验时,装置出口处冷空气与环境的最大温差分别为4.7℃和5.4℃。通过计算,装置的有效致冷功率为74.5W/m^2,故该装置可实现节能型建筑夏季夜间的连续降温。
基于制冷剂泄出的涡旋压缩机容量调节技术
具有固定内容积比的涡旋压缩机存在当外压缩比小于其内压缩比时内容积效率较快下降的问题,由于空调制冷(热泵)系统大部分时间运行在偏向小室内外温差工况即小压缩比工况下,此时压缩机处于过压缩工况,故制冷(热泵)系统的效率低下;同时,随着系统压缩比的减小,会出现建筑的供冷/供热负荷下降和系统的供冷/供热能力上升的矛盾,系统存在降容的需求。为解决小压缩比工况下压缩机效率降低和系统容量过大的问题,提出一种带制冷泄出功能的涡旋压缩机制冷系统,采用模拟分析和实验测量方法,对其技术可行性进行研究,结果显示:合理适度的制冷剂泄出能有效提高压缩机在过压缩工况下的内容积效率,提高系统的COP并减小制冷系统的制冷/制热能力,是一项极具潜力的制冷系统调节技术。
垂直降膜式吸收机内布液器的实验研究
吸收式热泵技术由于能有效利用低势热能而节约高品位的电能,已经成为一项重要的节能技术。吸收器是吸收式热泵的最重要的部件,其性能主要取决于换热管的传热与传质系数,而传热管表面液体降膜状态对传热和传质系数将产生直接影响。布液器是实现液体降膜的关键部件,而目前国内外鲜有相关研究。针对这种现状,共试制了四种规格的布液器样品,针对Φ19和Φ25的紫铜光管与强化换热管进行了管外垂直降膜布液实验,得到了各种布液器布液流量与静液柱高度关系的实验数据,并且拟合了布液器的流量系数与雷诺数的函数关系。根据实验结果提出了优化布液的方法,并用于指导热泵机组的设计。优化后的布液器已经被成功应用于国内首台供热量为1.3MW垂直降膜式吸收式热泵机组样机。
有内热源房间空调器制冷系统热力膨胀阀的匹配研究
为了保持热源的降温,应用于有内热源房间的空调器一年四季都需要运行。由于热力膨胀阀特性的限制,空调器在低环境温度下,蒸发器供液不足,使得整机制冷量和COP增幅不高。为了改善整机性能,在焓差实验室对空调器进行了性能测试,得到了-5~35℃环境温度下蒸发压力、冷凝压力、制冷量和COP等热工参数变化。结合热力膨胀阀的型号和特性,研究了热力膨胀阀在变工况条件下与系统其它部件的匹配关系,旨在扩大膨胀阀的工作区间,提高低环境温度下房间空调器的效率。研究表明,兼顾较大范围环境温度变化匹配热力膨胀阀,应扩大50%~100%开度工作区间,缩小100%~120%开度工作区间,降低制冷系统设备、部件和管道阻力,避免两个震荡区进入使用范围。