液晶自适应光学扫描激光检眼镜的光学系统设计
设计了一套液晶自适应光学扫描激光检眼镜,采用790nm近红外光进行波前探测、视网膜成像以增加受试者的舒适度:采用离轴反射式结构以避免透镜表面的杂散光对探测和成像的不利影响:采用开环校正模式以提高系统稳定性和能量利用率(比闭环高约1倍)。利用ZEMAX软件对成像系统进行模拟分析。证明系统自身可以达到接近衍射极限水平,MTF@33cycles/mm=0.38(对应视网膜上4μm),MTF@44cycles/mm=0.2(对应视网膜上3脚),轴向分辨率约80μm,满足设计要求。
分块式空间望远镜的波前校正方法
对于同时具有可变形分块式主镜和变形镜的空间望远镜光学系统,提出一种基于小波分解的并联波前校正法。该方法根据分块式主镜和变形镜的空间校正能力不同,利用小波分析的多分辨率分析的特点按不同尺度分解波前误差,将空间频率高于主镜空间带宽的各层波前误差合并为高频波前误差由变形镜校正,余下的低频误差由主镜校正;应用MATLAB小波工具箱对并联波前校正法进行数学仿真,并与依光路顺序的串联波前校正法进行比较,结果说明基于小波解耦的并联校正法波前校正精度高于串联校正法,适用于空间望远镜光学系统。
人眼视网膜成像自适应光学系统的初步试验和改进
搭建了一套基于液晶空间光调制器的人眼视网膜成像自适应光学系统,进行了活体人眼视网膜的初步实验.经过系统闭环校正,PV值和RMS值分别从2.293λ降低到0.176553λ,从0.55129λ降低到0.10511λ,接近衍射极限的水平.获得了较为清晰的人眼视网膜细胞图像,验证了液晶空间光调制器在人眼视网膜高分辨率自适应成像中应用的可行性,并针对试验中的遇到的激光散斑以及照明控制等问题,对原系统提出了一些改进设计.
液晶空间光调制器在自适应光学中的应用
本文主要包括两方面的内容,一方面描述用液晶光阀产生空间与时间性能可控的小尺寸薄相位屏;另一方面则讨论用液晶空间光调制器实现波前相位畸变校正的可能性。从而表明,这类价格低廉、结构简单而性能可靠的非线性光学器件可望在高性能新型自适应光学系统中得到广泛应用。
模拟双星的液晶自适应校正分辨
研究了液晶自适应光学系统对模拟双星的校正.首先测定了LCOS液晶波前校正器的位相调制特性.结果表明其可以实现一个波长的调制量.同时,利用Gamma校正实现了位相和灰度级的线性调制关系.然后把液晶波前校正器和哈特曼波前传感器组成自适应光学系统,并和口径220mm的望远镜对接,实现了对模拟双星的探测和校正分辨.
校正水平湍流波面的自适应光学系统的带宽需求
设计和搭建用于湍流校正的自适应光学系统时,必须考虑大气湍流波面校正所需的系统带宽。由于通常理论估计与实际的湍流情况相差很大,本文对如何进行带宽的精确测量进行了研究。通过对500m水平距离湍流波面的大量统计,分析了湍流波面的时间功率谱密度,得出了所需要带宽(Greenwood频率)的大小,并且首次得到了带宽需求的昼夜变化规律。实验发现,所需带宽在晚上变化缓慢,围绕10~15Hz波动;白天变化剧烈,在20~90Hz波动。最后,通过实验确定出了功率谱密度估计所需的采样总时间为70S,得到的实验结果为设计和搭建更加合理的自适应光学系统提供了实验依据。
电控可变焦128元×128元自适应液晶微透镜阵列
基于已有的单圆孔电极液晶透镜的结构与设计方法,研制了新型的电控可变焦128元×128元液晶微透镜阵列。该面阵液晶微透镜使用氧化铟锡(ITO)玻璃作为上下基板,上电极通过光刻技术和盐酸腐蚀方法得到128元×128元圆孔阵列图案;下电极为ITO膜。上电极的圆孔阵列排列整齐,每个圆孔的直径为50μm,圆孔之间的间隔为100μm,夹在上下基板之间的液晶层的厚度为20μm。验证了该面阵液晶微透镜的光学特性,结果表明,在0.2~5.0 V(RMS),该面阵液晶微透镜的焦距为50~400μm,焦点的焦斑尺寸在10μm左右,点扩展函数值近似于理论数值。该面阵液晶微透镜的工作电压与焦距成反比,可以成清晰的多重像。
微变形反射镜主要性能测试研究
微变形反射镜(MEMS-DM)是用于自适应光学中波前校正的重要元件.测试实验中对37单元微变形反射镜的光学影响函数矩阵进行了推导和全面测量,从而验证了其叠加性.由光学影响函数推导出了微变形反射镜的控制电压矩阵,利用电压矩阵校正了变形镜的初始面形.最后,对微变形镜校正波前畸变能力进行了测量和评估,得出关于优化微变形镜设计相关方面的一些结论.
用Hartmann-Shack波前传感器测量大气湍流特征
建立了一个小型Hartmann-Shack波前传感器来测量大气扰动特征。通过单子孔径的象移和许多间距不同的子孔径之间的象移差测得的到达角起伏的统计值来计算出Fried参数r0。本文推导了采用不同孔径参数的实验结果,以及波前斜率的功率谱密度。
微机械薄膜变形镜校正性能及控制算法
通过对微机械薄膜变形镜影响函数矩阵的奇异值分解,构建了变形镜可以校正的像差模式空间,分析了变形镜对正交基模式的校正能力和校正范围,提出了一种变形镜闭环迭代控制算法。通过对影响函数矩阵低秩近似的方法滤除校正性能较差的基模式的影响,实现了对畸变像差的有选择校正。以人眼出射波前为对象进行实验,通过比较不同模式项数校正时的效果,确定了最优校正模式项数的范围,通过设置残差容限的方法,消除了人眼晃动和眨眼的影响。实验结果表明:控制算法能通过选择合适的校正项数,提高变形镜的校正性能,并获取到了高清晰度的人眼视网膜图像,为眼科疾病诊断和治疗提供了一种新的观察手段。