基于视觉技术和Mask R-CNN的法兰盘表面缺陷检测研究
在法兰表面缺陷检测任务中,为了对缺陷进行精准定位和分类,根据缺陷位置和类别综合判定法兰是否符合特定标准的质量要求,结合缺陷特征和相应标准,提出一种基于视觉技术和Mask R-CNN的法兰表面缺陷检测与评估方法。依据法兰的适用原则和缺陷判定标准对法兰表面进行区域划分。通过搭建图像采集平台,采集图像并对其进行预处理操作后添加至网络训练集中。采用Mask R-CNN作为缺陷检测网络的基本框架,结合法兰表面缺陷特点改进Mask R-CNN骨干网络和颈部网络,并对网络性能进行验证。最后,根据检测标准,使用边缘检测算法对模型检测结果进行复检。结果表明改进后的方法能够实现精确的定位并进行质量评估,满足法兰表面缺陷检测的要求。
基于PCA-RF-BP的液压系统异常状态诊断策略
液压系统状态监测信号受回路特性与泵机组运行工况影响,呈现复杂非线性且异常状态难以准确识别与诊断。为此,提出了一种基于主成分分析与随机森林BP神经网络(PCA-RF-BP)的液压系统异常状态诊断策略,用于提高设备监测系统的诊断效率。首先,基于状态监测数据进行主成分分析以降低数据维度,同时计算T 2和SPE统计量进行过程状态的实时异常检测;其次,采用随机森林BP神经网络对异常样本进行预测分类。实验结果表明,所提方法能够有效地诊断液压系统泄漏状态,检测延迟至多5个样本点,预测分类精度达到99.88%,相较于现有方法平均提高了4.63%。
基于深度学习的航天密封圈表面缺陷检测
针对航天密封圈表面缺陷人工检测效率低、传统图像处理检测算法通用性差的问题,提出了两种基于深度学习的密封圈表面缺陷检测算法。首先,针对缺陷大部分为小目标的特点,选取对小目标较敏感的RetinaNet网络作为检测算法的基本架构,通过在RetinaNet网络中引入轻量级网络MoGaA构建出MoGaA-RetinaNet算法。然后,为了提高检测精度,在MoGaA-RetinaNet基础上,用分解卷积模块代替MoGaA骨干网络中的深度卷积构建了newMoGaA骨干网络,设计出newMoGaA-RetinaNet算法。最后,在测试集上的实验结果表明,MoGaA-RetinaNet算法比RetinaNet算法检测速度更快,但检测准确率略低;而newMoGaA-RetinaNet算法实现了检测精度与检测速度的良好平衡,比RetinaNet算法准确率提升4.5%,达到92%,检测速度提升55%,达到31 frame/s,网络参数量减少50%。所设计的newMoGaA-RetinaNet算法可以实现密封圈表面缺陷的快速准确检测。
基于深度学习的气动仿生手臂视觉抓取系统研究
针对基于视觉辅助下的机器人对目标物体识别精度与抓取精度的要求,提出了一种基于深度学习目标检测方法的视觉抓取系统。系统首先通过改进的深度学习的目标检测算法实现被抓物体的识别;其次根据张正友相机标定的方法对末端夹持器柔性夹爪和深度相机实现手眼标定;最后在气动仿生手臂实验平台上完成物体的抓取实验。实验结果表明,与传统视觉抓取系统相比,基于深度学习目标检测的抓取系统不仅能够提高机器人对被抓物体的识别精度,而且还能够适应在各种复杂环境下实现对多种类别物体的抓取,取得了令人满意的抓取效果。
基于机器学习方法的流体机械气动优化设计研究现状及展望
随着机器学习方法的不断发展,形成了各类算法,已有学者将其应用于流体机械的流动计算、流动控制以及优化设计。以深度学习为代表的机器学习方法具有强大的归纳学习能力,能够自主进行特征学习,不仅可以直接利用实验和数值模拟数据,从中挖掘出潜在的流场信息,更可以在优化设计过程中实现自适应的设计参数探索,以实现快速、鲁棒、全局且高效的优化,因此可以作为一种全新的流体机械优化设计方法。本文概述了流体机械气动优化的现状、机器学习方法的研究现状、机器学习在流动计算、流动控制以及流体机械优化设计中的应用现状,并指出了深度学习在流体机械优化设计上的应用前景。
基于深度学习和限幅模糊的变转速液压动力源恒流量预测方法
针对变转速液压动力源恒流量传统预测方法耗时长、预测误差大以及准确率低等问题,提出了基于深度学习和限幅模糊的变转速液压动力源恒流量预测方法。利用永磁同步电机数学模型、伺服控制器数学模型、齿轮泵数学模型和比例溢流阀数学模型,在深度学习的基础上,使用限幅模糊控制技术,对变转速液压动力源恒流量进行预测。结果显示:相对于传统预测方法,本文方法的预测效率和准确率得到了大幅度提高。
基于注意力机制的数控机床进给轴深度学习故障诊断
针对传统故障诊断方法易受振动传感器安装位置的影响、故障诊断准确性不高的问题,提出一种基于注意力机制的数控机床进给轴深度学习故障诊断方法(AM-CNN-GRU)。该方法以数控机床进给轴的电流、电压与温度等相关数据作为输入数据,针对采集的进给轴数据中蕴含大量的时空特征信息,为了提取数据中的时空信息以提高故障诊断准确性,设计一种由CNN与GRU并联组成的时空特征提取结构。为验证所提方法的准确性,利用FANUC数控提供的FOCAS数据开发包编写数控机
基于机器视觉与Faster-RCNN的Delta机器人工件识别检测
针对传统并联机器人在工作环境中存在抓取不精确、定位与分类识别效率低下的问题,提出一种基于机器视觉与Faster-RCNN神经网络的工件识别检测技术。采用Delta机器人实验平台采集图像,进行图像的预处理操作并将其添加至网络训练集。通过Python3.7-torch1.7搭建深度学习中的Faster R-CNN卷积神经网络,作为基本框架训练工件图像数据集。最后将训练后的卷积神经网络得到的工件检测结果与原实验工件识别系统对比。结果表明:改进后的识别平均精确度比原有识别
基于Bi-GRU模型的航空发动机外部液压管路故障诊断研究
针对航空液压管路故障信号含有噪声干扰导致管路故障识别困难的问题,提出一种基于双向门控循环单元(Bi-GRU)的深度学习液压管路故障诊断方法。由Bi-GRU神经网络模型综合液压管路数据进行时序特征提取,基于同一含噪声的液压管路振动实测数据,输入到Bi-GRU、GRU、RNN、SVM、BPNN等5种故障诊断模型中进行训练。最后,为了进一步展示Bi-GRU模型对于航空液压管路不同故障类型特征的学习能力,利用t-SNE降维算法进行液压管路特征可视化。结果表明:基于Bi-GRU航空故
基于深度学习和迁移学习的液压泵健康评估方法
对液压泵建立健康评估模型需要大量训练数据,然而由于其工作条件随时间和地点的变化,使得获取特定条件下的数据比较困难。为了在目标数据不足的条件下对液压泵建立健康评估模型,提出了一种深度学习和迁移学习的液压泵健康评估方法。首先,通过卷积神经网络的方法对已有大量历史条件下液压泵振动的频域信号建立预测模型,再用迁移学习的思想在少量目标液压泵数据上对深度学习模型进行微调。实验结果表明,该方法可以有效地提高预测准确率。