基于YOLOX-Nano网络的废旧产品螺钉检测方法研究
拆卸目标的自动检测是自动化拆卸的关键。针对基于深层神经网络算法的拆卸目标自动检测算法参数量大,导致的模型部署困难等问题,提出基于轻量级的YOLOX-Nano网络的目标组件智能检测方法。以十字螺钉为对象,构建数据集;提出基于迁移学习的YOLOX-Nano网络训练方法,基于试验法分析目标框回归损失和目标置信度损失对网络检测精度的影响规律,确定了最优的目标框回归损失和目标置信度损失组合,实现了网络检测精度的优化。最后,以某品牌插排为案例,对所提方法进行了实验验证。结果表明:使用轻量级网络实现十字螺钉检测,不仅得到了较为理想的检测效果,也大量减少了模型的部署时间,同时也为部署其他目标检测的轻量级网络提供了实验基础。
基于视觉的工业机器人装配演示示教研究
针对工业机器人编程效率低下、智能化程度不高和人机交互性能弱等问题,提出一种基于视觉的工业机器人装配演示示教系统,该系统包括目标检测与中心点定位模块、装配动作分类识别模块和机器人动作执行模块。在目标检测与中心点定位模块中,提出一种目标物体中心点定位和机器人抓取方法,使用实例分割算法识别物体类别,通过掩码均值化处理和坐标转换计算物体3D姿态信息;在装配动作分类识别模块中,建立基于深度学习网络的动作分类识别模型,该模型的输入为装配动作视频帧,输出为动作分类标签;最后,机器人动作执行模块根据物体类别、物体3D姿态和动作分类标签等信息规划机器人装配动作,控制机器人执行装配任务。以轴孔装配为例,验证了上述方法的有效性,实现了基于视觉演示的机器人装配模仿编程,对机器人演示示教研究具有一定的参考价值...
基于深度学习的工业零件识别与抓取实时检测算法
为了提高工业生产中视觉控制机械臂抓取工业零件的精度和速度,提出一种新的识别工业零件类别和最佳抓取位置的检测算法。运用YOLOv5l目标检测算法对视界中的多种工业零件进行识别,随后将其识别图片传入抓取位置检测算法进行最佳抓取位置的识别。针对抓取位置检测的问题,提出一种改进的神经网络模型,在GG-CNN网络的基础上添加四层残差网络做平层特征提取,增强特征提取的效果。实验结果表明:此算法的识别准确率在95%以上,抓取成功率在90%左右,验证了该算法在多种工业零件和最佳抓取位置识别中具有高准确性和时效性。
基于YOLOv7-mask和ORB-SLAM2的语义八叉树地图构建
针对传统视觉SLAM构建的地图不具有语义信息的问题,提出一种基于深度学习算法的八叉树地图构建方法。该方法采用YOLOv7-mask对图像进行实例分割,得到像素所属类别信息,生成语义灰度图,并结合ORB-SLAM2,将新关键帧投影生成语义点云地图,最终将语义点云地图转换成语义八叉树地图进行存储。通过搭建实验平台,构建了不同状况下实验室场景的语义八叉树地图,验证了所提方法的可行性。
基于深度学习的无锚框目标检测算法综述
近年来,基于深度学习的无锚框目标检测算法备受关注。为了深入理解无锚框检测算法,对比分析了基于深度学习的无锚框检测算法的原理机制、网络结构、核心特性以及优缺点,归纳总结了无锚框检测算法的核心技术,并在同一数据集上通过性能实验研究上述算法的性能,总结提出基于深度学习的目标检测算法未来的研究方向。
基于声信号递归Hilbert变换的轴承故障诊断研究
轴承缺陷检测与损伤程度检测一直是旋转机械领域内非常重视的问题,虽然目前针对振动信号的研究已经取得相当好的结果,但是对于难以安装振动传感器的情况,诊断效果仍需改进。针对强背景噪声下故障轴承产生的声音,提出一种基于递归Hilbert变换和一维卷积神经网络的诊断方法来提取抽象特征并进行模式识别。卷积神经网络结构中引入了全局平均池化层来加速网络的运行。最后,通过数据集验证了所提方法的有效性,与其他常用分类方法进行对比,验证了该方法的优越性。结果表明:所提算法不仅能够准确识别轴承的损伤部位,而且能够准确区分部件的损伤程度。
基于改进YOLOv7的液压阀块表面微小缺陷检测
针对液压阀块表面缺陷尺寸微小、对比度低、周围干扰信息多导致的漏检率高、识别准确率低等问题,提出一种基于改进YOLOv7的液压阀块表面微小缺陷检测算法。在多尺度特征融合模块后引入CA注意力机制来提高对微小缺陷特征信息的关注度。使用改进的UpC多支路上采样结构代替多尺度特征融合模块中的最近邻插值上采样UpSampling模块,以丰富微小缺陷的特征信息。利用改进的ELAN-RepConv结构代替多尺度特征融合模块中的ELAN_2结构,使模型在训练过程中可以学习到更多的特征信息。为了进一步提高算法的鲁棒性与收敛速度,使用离线数据增强融合Mosaic数据增强的数据增广技术与K-means++锚框聚类算法来提高算法性能。实验结果表明:该算法在液压阀块表面微小缺陷数据集中平均精度达到97.6%,较原YOLOv7算法提高8.4个百分点,检测速度达到55.2 frame/s;相较于YOLOv7系列中...
高超声速风洞短时气动力智能辨识算法研究
风洞测力试验是高超声速飞行器研发的重要环节,随着这项技术的发展,试验模型的大尺度化成为高超声速风洞试验的趋势.在几百毫秒的有效测试时间内,大尺度测力系统刚度减弱等问题会严重导致气动力辨识精度变差,试验模型大尺度化对短时脉冲燃烧风洞精确气动力辨识带来了挑战.对此本文提出了一种新的基于传统信号处理结合深度学习的智能气动力辨识算法,该框架分解两个主要阶段(1)信号分解,(2)数据训练.其中信号分解阶段通过变分模态分解将原始数据分解为不同模态子信号,随后通过Pearson相关性分析筛除干扰子信号;在训练阶段通过深度学习模型提取训练数据集中含有有效特征的子信号,最终得到真实气动力信号.此外,为增强算法的鲁棒性,在算法框架不同阶段通过不同方法对算法中的超参数进行优化得出最优参数组合.此算法在气动力辨识精度以...
基于CNN机翼气动系数预测
随着机器学习的快速发展和其突出的非线性映射能力,越来越多的学者将机器学习方法应用到流体力学领域。为克服传统数学拟合不能很好的解决系统非线性问题,以及现有文献中所提及的一些基于神经网络的气动参数预测方法,需要进行参数化处理而带来的不便,同时为实现多变量多输出气动参数快速预测的目的,基于卷积神经网络考虑机翼变迎角和浮沉建立了一种多变量多输出的机翼气动参数预测模型,实现了机翼气动参数的快速预测。结果表明所建模型具有较高且稳定的预测精度,并且计算效率较计算流体力学(CFD)提高了40倍。
CNN-SVM模型在抽油机井故障诊断中的应用
针对传统的示功图识别方法对抽油机井进行故障诊断存在人工选取示功图特征,识别准确度低等问题,基于人工智能理论,提出一种卷积神经网络(CNN)和支持向量机(SVM)相结合的示功图智能识别模型。利用卷积神经网络对示功图图像特征自动提取,利用支持向量机根据提取的深层图像特征给出故障诊断结果。结果表明,将CNN与SVM结合用于示功图识别不仅省去了人工选取示功图特征这一环节,而且识别准确度也高达99.71%,测试性能优于其他识别模型。该模型的提出为抽油机井故障的快速准确诊断提供了可行的解决方案,对油田高效作业具有重要意义。