基于单缝衍射原理的圆度误差测量方法
提出了一种全新的圆度误差光学自动测量方法。新方法基于单缝衍射原理,利用工件的圆度误差来改变衍射单缝的宽度,进而改变衍射条纹的间距。在测量单缝衍射中央明纹的宽度时,提出了用最小二乘法对测量到的衍射图像的光强分布进行二次曲线拟合,并由拟合得到的数学表达式,确定衍射暗条纹的精确位置。由导出的工件圆度误差与单缝衍射中央明纹宽度之间的关系,用最小二乘法对工件的圆度误差进行了评定.测量结果表明,新的圆度误差测量方法是可行的,圆度误差的相对不确定度小于1.4%,并且测量系统具有操作方便、精度高的优点,新方法也可应用于锥角、直线度误差等其它几何量的精密测量中。
用劳埃德镜干涉原理进行圆度误差测量
提出一种应用线阵CCD自动测量圆度误差的新方法。论述了系统利用劳埃德镜干涉装置,通过线阵CCD图像处理系统自动测量圆度误差的工作原理及过程设计。测量结果表明,新的测量方法实现了圆度误差的实时精确在线测量。该测量系统具有一定的实用价值及较广阔的应用前景。
基于干涉原理的高精度直线度误差测量
将空气劈尖产生的等厚干涉与CCD图像处理技术相结合,提出了一种测量连续空间直线度误差的新方法。此方法利用待测工件的直线度误差改变空气劈尖顶角,并用一元线性回归方法对CCD的像元序号与所接收到的干涉条纹光强极值序号之间线性关系进行拟合,进而确定出空气劈尖顶角大小。由导出的直线度误差与空气劈尖顶角之间的关系,用最小包容区域法对工件的直线度误差进行了评定,评定结果为8.11±0.62μm。测量结果表明,新的测量方法是可行的,而且测量系统具有精度高、应用范围广的特点,也可应用到锥角、圆度误差等其他几何量的精密测量中。
一种新的直线度误差测量装置
利用改进的洛埃镜干涉装置设计了由直线度误差使洛埃镜偏转通过改变等效双狭缝间距进而改变干涉条纹间距的新的直线度误差测量方法.由导出的直线度误差与干涉条纹间距之间的关系并用最小包容区域法对直线度误差进行评定.测量结果表明新的直线度误差测量方法是可行的.此方法特别适用于短距离连续空间直线度误差的测量并且测量系统具有结构简单、操作方便、精度高、应用范围广等优点.
小转角测量方法的改进
利用单缝夫琅和费衍射装置,通过转动来使组成狭缝的一个棱边与另一固定棱边形成分离间隙,进而使观察屏上的衍射条纹出现不对称分布现象。用最小二乘法对由线阵CCD测量到的衍射图像的光强分布进行二次曲线拟合,并由拟合得到的数学表达式,确定衍射条纹的精确位置。推导出转动棱边在转动平面内两个相互垂直方向上的位移与观察屏上衍射暗纹位置之间的关系式,并利用它对转动棱边的转角进行计算。实验结果表明,新的测量方法可以实现小转角的高精度测量,转角的测量不确定度可达4.2″。
应用干涉法测量杨氏弹性模量
将空气劈尖的等厚干涉原理与CCD图像处理技术相结合,提出了一种对材料杨氏弹性模量进行高精度自动测量的新方法。该方法利用待测试件受力产生的形变改变空气劈尖顶角,并用一元线性回归方法对CCD的像元序号与所接收到的干涉条纹光强极大值序号之间线性关系进行拟合,进而确定出空气劈尖顶角大小。由导出的杨氏弹性模量与空气劈尖顶角变化量之间的关系,对待测试件的杨氏弹性模量进行了计算。测量结果表明,新的测量方法是可行的,测量相对误差为1.5%,而且测量系统具有高精度、高灵敏度的特点,可广泛应用于各种微小形变的测量。
-
共1页/6条








