电液位置伺服系统高增益自抗扰控制
针对电液位置伺服系统采用自抗扰控制策略时,存在因系统阶数过高导致状态观测器需观测的变量多、观测信息相位滞后以及易引起系统响应滞后及超调等问题,采用高增益自抗扰控制方案。对系统模型进行降阶处理,以简化控制器结构,减少待整定参数;在传统扩张状态观测器的基础上,进一步对系统总扰动的微分信号进行观测,观测系统扰动的变化趋势,产生有效的超前补偿信号,从而提高系统控制性能及抗扰能力。最后,通过MATLAB与AMESim进行联合仿真。结果表明:该控制方案相比于传统自抗扰控制,系统超调量降低85%,响应速度提高47.7%,并有效提高了系统抗干扰能力,具有更优良的动态及稳态性能。
基于Isight的燃油泵多目标优化仿真分析
容积效率是燃油泵的关键指标之一。在传统优化设计基础之上,重点考虑容积效率因素,以燃油泵的端面功率损失和径向功率损失为目标最小建立多目标优化数学模型,应用Isight的多目标优化算法Pointer对燃油泵的结构参数进行优化分析,获取满足规定约束条件下其结构参数的最优值及各参数对齿轮泵影响的变化规律,有助于后期燃油泵效率的进一步优化仿真。
齿轮螺旋线修形优化研究
齿轮传动由于受制造和安装误差、齿轮弹性和热变形等因素的影响,在啮合过程中不可避免地会产生振动、冲击和偏载,从而造成齿轮效率和寿命偏低的问题。针对该问题,运用虚拟仿真验证手段,以典型外啮合直齿圆柱齿轮为研究对象开展螺旋线修形优化。结果显示,优化后齿轮表面应力分布均载程度提高78.31%,传动误差降低41%,螺旋线载荷分布系数降幅达到39.3%,接近于1。可见,螺旋线修形能够显著改善因各种因素综合引起的螺旋线偏差,改善传动状态,提高啮合
燃油泵滑动轴承浮动特性影响因素分析
燃油泵滑动轴承的浮动特性直接影响燃油泵的容积效率,针对现有某型号用燃油泵滑动轴承在浮动过程中存在的偏磨现象,通过卸荷槽、引油孔、负载压力、滑动轴承内孔等对滑动轴承浮动特性的影响进行理论及多维度批量仿真分析。结果表明,卸荷槽及滑动轴承内孔直径在不同配置条件下对滑动轴承的浮动特性影响较小;引油孔的位置位于节圆附近较为合适,且半径在0.6~1.2 mm之间,数据可为进一步优化燃油泵的性能做理论参考。
配流阀可靠性设计技术研究
配流阀作为柱塞泵的关键元件,直接影响柱塞泵的性能技术指标,尤其是高速高压条件下,配流阀的可靠性要求更高。基于概率统计理论与可靠性设计方法研究高速高压微小型轴向柱塞泵的配流阀密封副固有可靠度,并分析关键变量对配流阀固有可靠度的影响规律,进一步通过样机试验验证。研究结果表明:壳体材料、配流阀环形内外径、弹簧的材料特性、钢丝直径、弹簧中径以及弹簧预紧力对其固有可靠度影响显著。
二级阻尼先导式平衡阀动态性能研究
平衡阀是导弹发射车变幅机构液压系统中的关键部件,用于承担负值负载,其动态性能的优劣决定了液压系统的稳定性和安全性。建立了二级阻尼先导式平衡阀所在系统的详细数学模型,并进一步得出了传递函数。采用频域分析方法研究了阻尼孔直径和控制活塞直径对系统的稳定性和快速性的影响;采用MATLAB/Simulink对平衡阀-液压缸-变幅机构系统进行了动力学仿真,分析了阶跃流量输入下系统的抗负载扰动性能。结果表明:系统快速性随阻尼孔直径增大而提高
基于SimulationX的液压挖掘机仿真分析
根据液压挖掘机机械部分的构造和液压系统的工作原理,利用SimulationX软件建立了液压挖掘机的机械系统和液压系统仿真模型,对液压挖掘机的挖掘和收回过程进行了动态仿真分析。结果表明:该系统简单、可靠,能够很好地再现挖掘机的工况。仿真结果对液压挖掘机的液压系统和机械系统的优化设计具有一定的指导作用。
基于SimulationX的泵车臂架液压系统建模与仿真
混凝土泵车臂架液压系统作为泵车三大液压系统之一,且具有势能可回收性,为了研究其势能的回收,有必要对其臂架液压系统进行精确的建模与仿真分析。作者根据某型混凝土泵车的臂架液压系统原理图,通过多学科领域建模、仿真与分析软件SimulationX建立了臂架液压系统的仿真模型,并对系统进行了时域动态仿真分析。结果表明:此负载敏感系统简单、可靠,运行状况良好,符合后续研究势能回收所具备的所有要求。
负载敏感比例多路阀的建模与仿真
为了分析泵车臂架液压系统,有必要对泵车臂架液压系统的关键元件负载敏感比例多路阀进行建模与仿真分析并获取其动态特性.根据某型混凝土泵车的臂架液压系统所采用的负载敏感比例多路阀的工作原理,通过多学科领域建模、仿真、分析软件SmiularionX建立了该阀的仿真模型,并对此阀进行了动态仿真.结果表明:该阀与实际运行状态一致,并且建模方法简单.
重型平板车液压系统与发动机功率匹配研究
根据重型平板车液压系统功率分配的特点,从发动机与泵的功率匹配、发动机最佳工作点的选取及负载与泵的匹配等环节分析了重型平板车液压系统与发动机功率匹配原理。在充分考虑液压系统效率及发动机载荷的基础上,提出了重型平板车液压系统与发动机功率匹配的实现方案及节能控制规律。TMZ100型重型平板车现场试验表明,此功率匹配系统满足该重型平板车操控性能的要求。