IPMC微泵驱动膜的设计及结构优化
利用离子聚合物人工肌肉(IPMC)固有的电致动性能,设计了圆盘形、S形、条形及扇形4种不同结构的致动膜,选择最优结构的驱动膜以驱动微泵。制备了一系列IPMC悬臂梁状致动器,利用激光位移传感器测出不同条件下致动器产生的位移。ANSYS软件下,利用位移推导出IPMC单元体的弯矩,以此计算衡量微泵的体积变化和最大工作压力。同时,分析了泵膜形状、半径、厚度、驱动电压对泵体积变化和工作压力的影响。结果表明:较之于其它3种泵膜,扇形泵膜的体积变化量最大;泵膜半径的增加有利于增大体积变化量;泵膜厚度的增加有利于增加工作压力;适当地增加驱动电压,可同时提高其工作压力和体积变化量。
CAM软件在数控加工中的应用研究
对于较复杂零件,如果采用传统的手工编程方法来编程加工,将导致编程时间过长且编程正确率很难保证,从而导致了零件加工生产率的降低,因此有必要利用CAM软件来对任意形状零件进行自动编程。以利用Mastercam软件加工一较复杂零件为例来说明CAM软件在数控加工中的应用,首先分析该零件的加工工艺,再用Mastercam软件对该零件进行建模,根据零件加工工艺进行参数设置等,最后生成程序,然后通过通信传输软件传入数控机床,机床准备工作完成后进行加工,最后将实际加工出的工件和图样比较可知形状、尺寸精度均符合图纸要求,从而证实了CAM软件在数控加工中是切实可行的。
车辆稳定性电控系统液压调节器开环压力估计
建立了车辆稳定性电控(ESC)硬件在环(HiL)试验台和ESC试验车并将其作为ESC系统研究开发平台。建立了ESC系统液压调节器(HCU)的液压模型并根据在ESC HiL试验台得出的液压特性试验结果标定其参数。根据获得的ESC HCU稳态液压特性进行车轮缸的开环压力估计,基于这个估计,将闭环压力估计算法下载至ESC试验车环境进行稳定性控制试验。试验结果表明:得到的压力估计算法可以为装备ESC的车辆提供可靠的估计压力值。
汽车ABS混合仿真试验台的开发与研究
对汽车防抱制动系统(ABS)混合仿真试验台进行了系统分析,建立了用于硬件在环仿真的车辆模型、轮胎模型、路面模型以及ABS液压系统模型,并进行了硬件在环的仿真试验。把ABS实际部件嵌入到软件环境中进行混合仿真极大地扩展了软件仿真的功能,为ABS产品开发提供了开发工具和试验平台。
液压助力转向轿车中心区操纵性分析
为了研究和改善汽车中心区操纵性,在Adams/Car平台下建立了液压助力转向轿车整车模型,对该模型与试验数据进行了对比验证,并提出中心区操纵性分析评价的主要方法.基于该模型通过改变转向系的角传动比、刚度、干摩擦和助力特性等参数研究了其对汽车中心区操纵性的影响,仿真结果表明:角传动比对转向灵敏度影响最大;干摩擦和助力特性对转向回正和路感有较大影响.设计时应首先选取合适的角传动比和助力特性,并尽可能降低干摩擦,且兼顾转向系刚度的影响,进行协调设计匹配.
-
共1页/5条