基于改进灰色预测模型的液压泵寿命预测
选取液压油的光谱分析数据作为液压泵的寿命特征信息,针对油液采样间隔不等间距的情况,研究非等间距灰色GM(1,1)模型。对建模数据背景值进行改造,建立改造背景值的非等间距灰色GM(1,1)模型,提高模型的预测精度。研究了油液分析阈值的制定方法,制定液压泵磨损金属元素含量和含量趋势值的阈值。运用改进背景值的非等间距灰色GM(1,1)模型对某型凿岩台车的液压泵进行寿命预测,预测精度达到95.78%。
基于改进灰色神经网络的液压泵寿命预测
改进了GM(1,1)模型,提高了其精度和适应范围;将改进的GM(1,1)模型与神经网络预测模型相结合来构建灰色神经网络组合预测模型;提出了基于支持向量机的液压泵寿命特征启发式搜索策略,以液压泵寿命特征参数特征集的交叉验证错误率为评价指标,从液压泵的特征参数(振动、压力、流量、温度、油液信息等)中选取寿命特征因子;运用小波阈值降噪法进行降噪处理,提取典型的小波包能量特征作为模型的输入。以齿轮泵为例,将改进的灰色神经网络预测模型与原始GM(1,1)模型和改进GM(1,1)模型比较可知,灰色神经网络预测模型预测精度最高,达到98.42%。
基于灰色支持向量机的液压泵寿命预测方法
针对单方法所建液压泵寿命预测模型精度较低的缺陷,提出基于灰色理论和支持向量机的组合预测模型的液压泵寿命预测方法。该方法通过灰色累加生成操作对原始序列进行数据处理,以增强数据的规律性;运用最小最终误差预测准则确定嵌入维数,选择模型的参数;采用支持向量机进行预测,利用灰色累减生成操作还原数据,得到预测结果。选取液压油的光谱分析数据作为液压泵的寿命特征信息,采用该模型对液压泵进行寿命预测,并与灰色模型、单一支持向量机模型进行预测性能对比。结果表明,灰色支持向量机预测性能最优,精度达到99.37%,为液压泵性能评估和寿命预测提供一种更为有效的方法。
故障贝叶斯网络及其在液压缸爬行诊断中的应用
利用故障树分析能明确表达逻辑关系和贝叶斯网络解决不确定性问题能力强的优点,通过转化算法建立两者之间的联系,研究了一种基于二状态故障贝叶斯网络模型,采用分层处理思想,进而计算出模型中任意结点的概率。液压缸爬行诊断分析实例证明了应用故障贝叶斯网络的实用性和有效性。
多源信息融合及其在齿轮泵故障诊断中的应用
针对齿轮泵故障信息的不确定性和模糊性,提出了一种多源信息融合的贝叶斯网络故障诊断方法。在探讨齿轮泵故障机理的基础上提取振动、流量和压力信号作为故障特征,构造故障贝叶斯网络,建立贝叶斯分类器进行多特征信息融合,利用最大后验概率准则判别故障类型。融合结果表明,该方法能够有效实现齿轮泵多种故障的诊断,具有广阔的应用前景.
基于支持向量机的液压泵寿命特征因子提取方法
液压泵的性能状态参数包括振动、压力、流量、温度和油液等信息,如何从这些状态参数中选择能够影响和表征液压泵寿命的特征因子是进行液压泵性能评估与寿命预测的难点。基于此,研究了特征选择策略,提出了基于支持向量机的液压泵寿命特征启发式搜索策略,以液压泵寿命特征参数特征集的交叉验证错误率为评价指标,学习识别与选取能够表征液压泵寿命的特征因子,解决了液压泵寿命特征因子选取难的难题。应用实例表明该方法能够选择出反映液压泵性能的寿命特征参数。
虚拟仪器技术在液压测试中的应用
本文介绍了虚拟仪器技术的特点及其在液压测试中的应用,并以PC-DAQ系统为例论述了基于虚拟仪器技术的液压测试系统的构建过程。
液压系统漏油故障的分析与排除
文章在分析了液压系统漏油危害的基础上,从三个方面分析了产生漏油故障的原因,并提出了相应的排除措施。文章所提出的理论为减少和防止液压系统漏油提供了基本途径。
设备液压系统漏油的防治
液压系统漏油是个日益突出的问题。从管路安装、油温控制、油液污染、选用和装配密封件4个方面阐述防治措施,提出相关防漏治漏理论。
基于改进灰色预测模型的液压泵寿命预测
选取液压油的光谱分析数据作为液压泵的寿命特征信息,针对油液采样问隔不等间距的情况,研究非等间距灰色GM(1,1)模型。对建模数据背景值进行改造,建立改造背景值的非等间距灰色GM(1,1)模型,提高模型的预测精度。研究了油液分析阈值的制定方法,制定液压泵磨损金属元素含量和含量趋势值的阈值。运用改进背景值的非等间距灰色GM(1,1)模型对某型凿岩台车的液压泵进行寿命预测,预测精度达到95.78%。