基于改进特征选择方法的齿轮故障SVM诊断
为提高齿轮故障诊断的精度,对常用的共享特征选择方法(Share feature selection,SFS)进行改进,提出了改进的特征选择方法(Improved feature selection,IFS)。改进的特征选择方法结合齿轮两两故障类型之间的特点,在齿轮两两故障之间建立独立的故障特征集,用以取代所有故障类型的共享特征集;而后,通过建立多个二分类的支持向量机,对独立的故障特征集进行识别,得到诊断结果。齿轮故障诊断实例表明,改进的特征选择方法排除了无用特征的干扰,提高了诊断精度,具有一定的优势。
基于可解释极端随机树模型的DCT液压响应预测
为解决传统湿式双离合器变速器(Dual Clutch Transmission,DCT)控制策略在硬件误差以及复杂工况下液压响应预测精度不完全可控的问题,提出了一种基于SHAP图可解释极端随机树预测模型,使用机器学习方法结合某汽车公司DCT实验室采集的真实离合器数据对DCT液压响应进行预测。模型利用SHAP算法对于重要特征选择的可解释性,筛选并保留对液压响应影响较大的特征,将时间切片和升降压判定作为特征加入训练数据,训练预测模型。结果表明,该模型训练结果的均方误差MSE为0.6703,可决系数R2为1.0000,并且在测试集上预测值与实际值之间的平均误差为12.99 kPa,远低于设计误差25 kPa,具有较高的预测精度,特征选择较准确,可以很好地解决传统物理模型无法计算不同工况下液压响应的问题,为下阶段基于数据和物理双驱动的DCT控制策略优化提供较准确的预测结果。
基于聚类优化的非负矩阵分解方法及其应用
针对不断增加的机电系统运行状态信息,传统的特征提取和选择方法已无法满足需求。根据非负矩阵分解典型算法的特点,基于非负矩阵分解的聚类特性,提出了一种面向故障诊断的分解方法。通过分类能力和迭代效率的对比分析,选择了相关性约束和稀疏性约束的改进型交替最小二乘迭代算法,确定了低维嵌入维数及迭代初始化方法,在UCI测试数据集和TEP系统的特征选择应用中验证了该方法的有效性。
LSSVM的特征选择算法在烧结过程的应用
炼铁厂的烧结过程是一个复杂的多变量、非线性的物理和化学过程,为了更好地对烧结过程进行建模,在研究最小二乘支持向量机和特征选择的基础上,提出了最小二乘支持向量机的特征选择算法。首先,利用最小二乘支持向量机对烧结样本数据的每一个特征进行训练和预测,记录其预测精度;然后,将样本特征按预测精度排序;最后,按新的特征顺序,逐个递增特征个数对样本数据进行训练和预测。烧结数据的实验结果显示,LSSVM的特征选择算法具有计算的高效性和预测的高精度两优势,证明所提算法的有效性。在所有的特征上对烧结数据进行拟合实验,对比经典SVM、最小二乘和神经网络算法的实验结果,LSSVM可以用很少的时间,得到很理想的拟合效果。
基于LFSS和改进BBA的滚动轴承在线性能退化评估特征选择方法
在滚动轴承性能退化评估中,不同工况会影响振动信号特征对故障程度的敏感性,在早期有限样本中选择适用于状态评估的有效特征是实现在线评估轴承性能退化程度的关键。首先提出一种基于均方根的早期有限样本判定方法 Limited Feature Select Sample(LFSS),其次提出一种针对性能退化评估特征选择的改进Binary Bat Algorithm(BBA)算法——Feedback Seeking Binary Bat Algorithm(FSBBA),将其应用于滚动轴承早期有限样本中进行故障特征选择,克服了原始BBA容易陷入局部寻优的缺点。基于LFSS与FSBBA算法,构建了滚动轴承在线状态评估模型,并将其运用于两例滚动轴承全寿命数据特征选择,性能退化评估指标分析结果表明了所提出方法的有效性。
核极化优化多参数高斯核的特征选择算法
为了解决支持向量机中多特征样本的特征选择问题,鉴于多参数高斯核中的多参数的不同取值可以区分和体现样本中各个特征的重要性差异,在深入分析核极化的几何意义和多参数高斯核特点的基础上,提出了基于核极化梯度优化多参数高斯核的特征选择算法。首先,利用核极化的梯度迭代算法来寻求多参数高斯核的最优多参数值,然后,以优化的多参数大小为基准,进行样本特征的重要性程度强弱标定,进而,采用特征重要性指标来执行SVM的特征选择。最后,将选择出的样本特征子集应用于SVM分类器中。UCI数据的实验结果表明,相较于PCA-SVM、KPCA-SVM和经典SVM方法,所提出算法的分类正确率更高,验证了核极化与多参数模型特征选择算法的有效性。
核极化的特征选择算法在LSSVM中的应用
在分类中,不同的样本特征对准确分类的贡献率大小存在差异,为了解决最小二乘支持向量机的特征选择的问题。在研究多参数高斯核和核极化的基础上,提出了核极化优化多参数高斯核的特征选择LSSVM算法。首先,利用核极化最大化来优化多参数高斯核中的多参数,进而,判断出样本不同特征的重要性权重大小,然后,按特征重要性程度从大到小的顺序,依次添加一个特征到LSSVM中训练和预测。从UCI数据库选取出的数据集上的实验仿真结果验证了所提算法的有效性,在实际应用中,可以用样本中几个重要特征来预测样本以便提高预测效率,而且,LSSVM和SVM在所有特征上的实验结果说明了采用核极化的特征选择算法在LSSVM应用的高效性。
基于量子遗传算法的轴向柱塞泵故障特征选择
为了进一步减少特征维数、缩短运算时间、提高分类正确率等,提出了一种基于量子遗传算法的轴向柱塞泵故障特征选择方法,该方法采用量子位进行染色体编码,利用量子门更新种群。首先,对轴向柱塞泵振动信号进行小波包变换,提取出原始信号和各个小波包系数的统计特征;然后,利用量子遗传算法从原始特征集中选择出最优特征集;最后,以神经网络为分类器(其输入为最优特征集),对故障进行诊断与识别。利用该方法对轴向柱塞泵正常、缸体与配流盘磨损和柱塞滑履松动三种状态的特征集进行选择,试验结果表明,与普通遗传算法相比,量子遗传算法可以更有效地减少特征维数,提高分类正确率。
基于支持向量机的液压泵寿命特征因子提取方法
液压泵的性能状态参数包括振动、压力、流量、温度和油液等信息,如何从这些状态参数中选择能够影响和表征液压泵寿命的特征因子是进行液压泵性能评估与寿命预测的难点。基于此,研究了特征选择策略,提出了基于支持向量机的液压泵寿命特征启发式搜索策略,以液压泵寿命特征参数特征集的交叉验证错误率为评价指标,学习识别与选取能够表征液压泵寿命的特征因子,解决了液压泵寿命特征因子选取难的难题。应用实例表明该方法能够选择出反映液压泵性能的寿命特征参数。
基于改进型AdaBoost算法的轴向柱塞泵故障特征信息的分类诊断
对轴向柱塞泵故障特征信息的研究有助于辅助完成轴向柱塞泵故障类型的鉴别和分类。从轴向柱塞泵的所有故障中,选出两种典型故障:缸体与配流盘磨损、柱塞滑履松动。从轴向柱塞泵原始振动信号中提取这两种故障特征的数据,经过小波包变换、数学变换以及遗传算法和偏最小二乘回归相结合(GA—PLS)特征选择后,确定最优的故障特征集。为了解决训练时间较长及权重调整过适应等问题,提出一种基于均匀分布权重和指数损失函数的改进型AdaBoost算法。分别使用AdaBoostM1,改进型AdaBoost构建分类模型比较其分类效果。结果表明:改进型AdaBoost使用仅含有少量的特征组成的最优特征集,可以得到较好的分类结果。