电驱高压气动减压阀动态特性仿真研究
设计了一种电驱高压气动减压阀,采用直流电机驱动活塞直动式减压阀,通过调节直流电机的转动角度来控制减压阀的出口压力。减压阀的调压性能受到直流电机控制电压、调压弹簧刚度以及活塞作用面积的影响。为此,建立电驱高压气动减压阀的数学模型,基于MATLAB/Simulink搭建电驱高压气动减压阀的仿真模型,分析直流电机控制电压、调压弹簧刚度以及活塞作用面积对其出口压力的影响,得出电驱高压气动减压阀合理的设计参数,最后对其进行阶跃响应与正弦响应仿真分析。结果表明,电驱高压气动减压阀具有良好的调压精度和动态特性,对同类型气动减压阀的结构设计和优化以及控制特性的改善具有一定的指导意义。
高压气动减压阀内部湿空气凝结特性
针对高压气动减压阀内部结露结冰的现象,建立高压湿空气凝结流动数学模型,开展高压气动减压阀内部结露机理研究。以湿空气和液滴为流动介质,采用湿蒸汽凝结理论和多组分运输模型,通过C语言和Fluent-UDF编程开发了高压超音速湿空气凝结流动数值模型,搭建实验平台进行数值模型验证。利用该数值模型对高压气动减压阀内部湿空气凝结流动特性进行仿真,并分析了高压超音速流动过程中湿空气的流动凝结行为。结果表明高压压缩气体流经节流阀口为绝热等熵过程,产生焦耳-汤姆逊正效应,气体体积迅速膨胀,压力和温度急剧下降,流速达到超音速流动;阀口附近下游区域大量成核,液滴快速增长,形成主要凝结区。高压湿空气凝结流动模型可为高压减压阀结构优化及进一步结冰机理研究提供参考。
大减压比高压气动比例减压阀阻尼孔耦合特性仿真研究
设计了一种大减压比高压气动比例减压阀,采用先导控制方式,通过调节比例电磁铁推力控制减压阀输出压力。通过进气阀芯与先导阀芯联动,调节进入控制腔气量,从而控制主阀芯开度,调整主阀芯节流作用,最终控制减压阀输出压力,达到输出压力与电磁铁推力动态平衡。控制腔的压力受控制腔进气阻尼孔大小、排气阻尼孔大小及进气阀开度影响。为此,建立了该比例减压阀的动力学及热力学数学模型,根据动力学及热力学数学模型搭建比例减压阀系统仿真模型,通过数值仿真分析主阀芯控制腔进气、排气阻尼孔参数与进气阀芯开度间耦合特性对该比例减压阀输出压力的影响,进一步优化该比例减压阀结构,提高减压阀输出压力控制精度及响应速度。本研究对同类型高压气动减压阀优化设计及输出压力控制性能的提高提供一定参考。
高压气动体积减压系统的预测PID控制研究
根据高压气动体积减压系统的数学模型,建立了基于MATLAB-Simulink的高压气动体积减压系统预测PID控制的仿真模型.仿真和实验研究结果表明:预测PID控制方法用于高压气动体积减压系统的输出压力控制是可行的,而且效果较好.
一种高压气动溢流阀性能试验系统
介绍某高压气动溢流阀性能试验系统,包括系统组成、关键元件结构及数据采集与处理系统等。
基于CFD的高压气动减压阀流场分析
对自主研制的高压气动减压阀结合流场计算与数学仿真进行了深入分析。简要介绍了高压气动减压阀的工作原理和先导阀的结构,提出采用CFD(Computational Fluid Dynamics,计算流体动力学)研究阀内流场分布以进行结构改进及性能优化。对先导阀内气体流道进行分析并建立了Gambit三维仿真模型,用Fluent计算得出阀内流场分布,压力分布与理论计算符合得较好;速度分布云图及气流速度矢量图表明阀内结构对气流形成阻挡,容易导致结冰以及噪声,应加以适当改进。
高压气动压力流量复合控制数字阀的仿真研究
高压气动系统的自动化对于压力和流量的自动控制都有迫切的需求,而气体的可压缩性决定了其压力与质量流量的控制具有共通性,即都可以通过调节阀门开度来实现,这就使得在同一套装置上实现压力和质量流量的复合控制成为可能。基于此,该文提出一种高压气体压力流量复合控制数字阀,复合数字阀由八个二级高压气动开关阀组成,工作压力可达20MPa以上,压力或流量控制精度可达1%以上。该文在介绍复合数字阀结构和工作原理的基础上,在AMESim中建立了仿真模型,并通过简单的仿真验证了该复合阀的可行性。复合数字阀的成功研制将解决现有高压气动压力阀存在的泄漏和结冰难题,填补高压气动阀进行质量流量控制的空白。
高压气动压力流量复合控制数字阀压力特性研究
气体的可压缩特性使得压力和流量可以通过同一个阀门进行控制,为此提出了一种高压气动压力和流量复合控制数字阀,该阀包括八个二级开关阀,通过控制器和压力传感器构成压力闭环反馈控制,二级阀阀口采用临界流喷嘴结构以减少压损。在介绍阀门结构和工作原理的基础上,对二级开关阀阀口面积的编码方案进行了研究,并利用仿真软件AMESim建立了系统模型。仿真结果表明,该复合控制阀能够实现快速准确且稳定的压力输出,气源压力为20MPa的情况下,输出压力的范围为1~19MPa,稳态偏差在±0.1MPa以内,具有较好的压力控制特性。
高压气动多级调速系统阻尼器排气特性研究
主要研究采用高压冷气为动力源的气动系统,实现低速平稳运动的方法,采用CFD方法对其中的排气阻尼器的排气特性进行了理论分析,为设计和优化气动多级调速动力系统提供了理论依据。
基于虚拟仪器的超高压气动试验台
根据超高压气动技术规范,结合实际工况,自主设计试验台系统,开发了基于LabVIEW的试验程序,并进行了系统的试验。该试验台由高压气源、控制系统、模拟负载、检测及数据采集系统组成,适用于超高压气动减压阀及容积减压装置。它的成功研制对超高压气动减压技术的研究发挥了重要的作用,有助于超高压气动技术的发展。