微动磨损形貌与接触应力场耦合机制仿真分析
微动磨损是影响机械关键结构的主要失效形式。为研究磨损形貌和应力场的演化过程及耦合机制,利用ABAQUS软件建立柱面/平面有限元接触模型,并基于Archard磨损公式对微动磨损形貌与接触应力场演化过程进行仿真,进一步对微动磨损过程中磨损形貌和应力场的耦合机制进行分析。仿真结果表明局部滑移下,磨损形貌呈“W”形,随着循环次数增加,接触宽度和磨损深度略有增加,接触区最大正应力和切应力略有增大;全局滑移下,磨损形貌呈“U”形,随着循环次数增加,磨损形貌显著变宽、变深,接触区正应力和切应力的应力场分布逐渐变宽变扁。
直齿轮齿面非均匀磨损对模态特性的影响
研究准静态工况下齿面非均匀磨损对齿轮模态特性的影响。根据Hertz接触理论和Archard公式建立准静态磨损模型,对齿轮齿面磨损情况进行数值仿真。计算结果表明,主、从动轮的齿顶处和齿根处磨损较大,其中,齿顶处磨损量小于齿根处,主动轮的齿根位置磨损量最大,节点处齿轮做纯滚动,不产生磨损,在单齿、双齿啮合区交替处磨损量有突变。在此基础上,按数值分析结果施加齿面磨损故障,导入到Abaqus中进行仿真,进一步分析了磨损前后齿轮的模态特性。仿真结果表明,齿轮具有丰富的振动形态,磨损对振型影响不明显,但固有频率出现明显升高,其中,7~10阶的高阶固有频率增大幅度要高于低阶固有频率增大的幅度。
变双曲圆弧齿线圆柱齿轮齿面磨损特性分析
磨损是齿轮的主要失效形式之一,研究其磨损特性对变双曲圆弧齿线圆柱齿轮的主动设计有指导意义。基于Hertz接触理论和Archard磨损计算通式,建立变双曲圆弧齿线圆柱齿轮的磨损模型,计算了齿面各点磨损量随工况参数和设计参数的变化规律。分析表明,变双曲圆弧齿线圆柱齿轮副齿面磨损沿齿廓方向从齿根到齿顶先减小后增大,且齿根区域的磨损量大于齿顶区域的磨损量,节圆附近磨损量最小;沿齿宽方向呈对称分布,中截面磨损量最大,从中截面到两端面磨损量依次减小。研究可为变双曲圆弧齿线圆柱齿轮的失效研究和寿命预测提供理论基础。
斜齿轮渐进性磨损对齿轮振动特性的影响分析
目前,研究磨损对齿轮动力学特性的影响大多采用传统的Archard磨损模型,并未考虑齿轮的润滑特性,且主要研究对象多为直齿轮。为了弥补斜齿轮研究方面的不足,数值模拟了混合弹流润滑状态下斜齿轮的磨损过程,建立了一个8自由度斜齿轮动力学模型,研究齿面磨损对斜齿轮动态特性的影响。在斜齿轮试验台上进行了齿轮疲劳试验,对数值仿真结果进行验证。结果表明,齿面磨损主要发生在靠近齿根和齿顶部分,且由于齿根处较高的滑滚比导致其磨损更加严重。根据齿轮啮合频率及其谐波幅值的变化可知,磨损导致齿轮的振动增加。试验分析与数值仿真有较好的一致性,说明该研究可以为斜齿轮磨损的预测和故障诊断提供可靠的理论依据。
板式链条链板磨损可靠性及灵敏度分析
链条传动在工程领域中应用广泛。链条中的链板磨损失效会导致疲劳强度减小、寿命降低等,链板磨损可靠性分析是非常有必要的。基于Archard模型,建立了链板磨损深度的可靠性计算模型,提出了链板磨损可靠性及灵敏度分析方法,进行了板式链条和槽轮运动机构中链板磨损可靠性的实例分析。结果表明,不同随机变量的分布参数对失效概率的影响程度不同。滑动距离对链板失效概率影响最大,允许磨损量、材料硬度和接触应力对链板失效概率影响较大,磨损系数对链板失效概率影响相对较小。允许磨损量的均值和材料硬度的均值对链板失效概率起负面作用,其他分布参数对链板失效概率起正面作用。
基于Archard理论的硬密封磨损寿命分析
针对硬密封阀门因密封面磨损而导致其密封失效的问题,采用Archard磨损模型,并借助ANSYS有限元软件模拟密封面的接触,以密封副初始挤压量为0.08 mm的硬密封为例,利用离散化的计算方法逐步对0.02,0.04,0.06 mm磨损深度下的密封面接触压力进行仿真求解,计算出不同磨损深度下密封面的正压力及穿透量并进行分析,推测其磨损趋势并得到密封面的磨损寿命,计算得到当密封失效时即密封副不再有挤压量时,阀门的使用寿命可达5 854次启闭,并发现硬密封的磨损可大致分为3个阶段进行。通过此类方法预测阀门使用寿命,可为硬密封阀门的结构设计及相关密封磨损的寿命研究提供一定的基础和参考。
基于Archard修正模型的角接触球轴承磨损有限元分析
在分析轴承受力和运动的基础上,研究了轴承运行时球与滚道接触区的滑动,计算了一定条件下接触区滑动速度的分布,指出了球在滚道上运动时纯滚动点的存在。开展了球盘摩擦磨损试验,得到了轴承钢在边界润滑条件下的摩擦因数和磨损系数。利用有限元方法和Archard磨损计算模型,建立了球与内圈磨损的仿真计算模型,并分析了运行时间、径向载荷、接触角等因素对轴承磨损的影响。
基于动态啮合力的齿轮磨损量计算方法
针对直齿轮磨损问题,考虑到齿轮动态特性对磨损的影响,联合Archard公式和齿轮动力学方程建立了基于动态啮合力的齿轮磨损定量计算模型。基于动力学方程求出动态啮合力,将动态啮合力及滑动系数代入Archard公式计算磨损量;将磨损量视为齿形误差重构齿廓,并重新计算动态啮合力及滑动系数;反复迭代则可得到动态啮合力和磨损量的变化规律。进行齿轮磨损试验,采用光谱仪分析油液中Fe元素浓度变化,得到齿轮磨损量的变化规律及磨损系数K,通过仿真结果与试验结果的对比验证了模型的准确性。最后对齿轮的磨损状态进行仿真预测,结果表明,当主动轮运转5.578×107次后,总磨损量达到2.085 g,动态啮合力峰值超过理论值的4倍,有过载风险;以此作为阈值则可得到齿轮的磨损寿命。仿真模型对于齿轮的磨损寿命预测和抗磨损设计具有重要的工程意义。
-
共1页/8条