基于EMD与三阶累积量的水声瞬态信号检测
提出了基于经验模态分解(EMD)与三阶累积量的水声瞬态信号检测方法。首先根据EMD方法的滤波器特性将待检信号在频域内分成一系列的本征模态函数(IMF)分量,并根据能量法选择信号占主导地位的IMF;然后运用高阶累积量抑制高斯信号的特性,计算IMF分量三阶累积量对角切片的短时估计,并构造检测函数,对检测函数时行包络检波,作为检测标准;最后用仿真数据对该方法进行了验证,结果表明能在较低信噪比下检测出目标信号的出现时刻和大致频率,具有一定的工程应用价值。
多核LSSVM算法在轴承故障识别中的应用
针对最小二乘支持向量机(LSSVM)实现过程中盲目选择核函数的现象,提出了一种基于核极化的多核LSSVM与EMD相结合的滚动轴承故障识别算法。首先,对滚动轴承振动信号进行EMD信号提取,进而提取故障特征向量;然后,根据多核构造原理,引入核极化确定基本核函数的组合权系数,构造多核函数;最后,结合多核函数与LSSVM,形成多核LSSVM学习器,进行故障识别。分析滚动轴承正常状态、内圈故障、外圈故障和滚动体故障的诊断实验结果,可知,EMD与多核LSSVM的故障识别算法可以准确地判断滚动轴承的工作状态和故障类型,并与SVM、LSSVM算法的诊断结果进行对照,表明所提算法的故障识别率更高。
基于多尺度解调谱熵的轴承故障特征提取方法
为了解决直驱风力发电机主轴轴承故障诊断问题,针对实际工程中振动信号的复杂特性,提出了一种基于改进经验模态分解(EMD)的多尺度解调谱熵的特征提取算法。多尺度解调谱熵利用EMD自适应分解特性与信息熵融合,首先对轴承振动信号进行EMD分解,将得到的各阶固有模态函数(IMF)分量进行Teager能量算子解调,获得不同频段的解调信号;其次,对各解调信号构造能量矩阵,并进行奇异值分解求取解调谱熵作为特征向量,从而实现对信号的多分辨率分析;最后,通过支持向量机(SVM)对实例数据进行故障分类实验,实现了较高的分类准确率,证明了该方法对于轴承故障诊断的有效性。
基于EMD和奇异值差分谱理论的列车齿轮箱故障诊断研究及实现
针对列车齿轮箱故障频率难以提取的情况,提出了一种基于EMD和奇异值差分谱理论的故障诊断方法。通过EMD分解齿轮原始振动加速度信号,得到若干个本征模函数;从频谱图中提取某个含有故障特征信息的本征模函数,对该分量构造hankel矩阵并对其进行奇异值分解,差分谱消噪,信号重构和希尔伯特包络解调,从而确定故障频率,准确实现列车齿轮箱的故障诊断。通过实验证明了该方法的可行性和有效性,为列车运行状态监控、故障诊断和运行安全自动防护提供理论和实践参考。
基于EMD和改进Teager能量算子的轴承故障诊断
为实现在非线性非平稳的轴承振动信号中提取出故障特征频率,提出了一种经验模态分解(EMD)和改进的Teager能量算子(NTEO)相结合的故障诊断方法。首先通过EMD将振动信号分解为若干阶本征模态分量(IMF),计算各阶IMF的峭度和与原信号的相关系数,利用峭度和相关系数均较大的IMF进行信号的重构,然后利用NTEO计算重构信号的瞬时Teager能量序列,最后对能量序列进行FFT变换,提取轴承的故障特征频率。分别对轴承内圈和外圈故障的振动信号进行分析,清晰地提取出了故障特征频率,并通过与传统Hilbert包络谱和Teager能量谱进行对比,验证了方法的有效性。
一种基于EMD和典型谱峭图的改进型共振解调方法
针对传统共振解调方法中带通滤波器带宽和中心频率的选取缺乏自适应性的问题,提出了一种基于EMD和典型谱峭图的改进型共振解调方法。该方法借助EMD优良的降噪效果,结合典型谱峭图方法,不但可以自适应地优化带通滤波器参数,还可以提高信噪比,增强故障冲击信号。通过对含典型故障的滚动轴承振动信号进行分析,验证了该方法在提取微弱故障特征上的有效性。
经验模态分解结合功率谱方法在轴承故障诊断中的应用
经验模态分解(EMD)方法具有自适应性特点,适用于非平稳、非线性信号的处理。针对轴承故障信号微弱及非平稳的特点,提出了基于经验模态分解结合功率谱的方法来提取轴承故障信号。试验研究中利用电火花加工方法分别在两个轴承上的外圈及滚动体上加工出凹坑,模拟早期剥落故障,并在试验台上获取振动信号。采用传统傅里叶变换方法分别对这些信号进行处理,不能得到有用信息,而采用EMD结合功率谱的方法能有效提取出试验轴承的外圈及滚动体特征频率。对比结果表明了经验模态分解结合功率谱方法对轴承早期故障诊断的有效性。
基于经验模式分解的支持向量数据描述用于机械设备状态评估研究
机械行业中的大型关键设备一般没有足够故障数据作为其运行状态的参考,对于这类设备的监测研究就更为重要。文中利用机械设备正常运行时的信息作为样本,利用EMD自适应分解采集到的数据,作为SVDD单值分类器的输入来判断机械设备运行状态,经滚动轴承实验,得到了较好的运行状态评估效果。
广义经验模式分解的齿轮断齿故障分析
在齿轮故障研究中,对信号进行自适应的分析能取得很好的效果。在振动信号上,经验模式分解(EMD)能够很好地满足信号分析方法的自适应性。但经验模式分解不够完善,该研究在经验模式分解的基础上提出了极值点等差分组的广义经验模式分解(Generalized Empirical Mode Decomposition,GEMD),并在齿轮断齿故障中进行试验分析,取得了一定的效果。广义经验模式分解(GEMD)包含了EMD,是对EMD的补充与完善。