基于全矢CEEMD的轴承故障诊断研究
提出了一种基于全矢谱的CEEMD故障诊断方法。CEEMD是为了在保证所得到的分解与EEMD有相当的分解效果的前提下,还要有效的抑制由白噪声引起的重构误差。具体做法主要是在分别进行EMD分解之前把两对相反的白噪声信号加入到原始信号中。此外,CEEMD对比EEMD,筛选迭代次数大大的减少了,进而使计算成本得到了有效的降低。根据分解得到的IMF分量的频率及其能量特点,通过全矢谱技术融合特定的IMF分量,得到基于CEEMD的全矢谱,进而进行故障诊断。由实验结果证明,经过该方法提取的故障特征更全面、精确。
基于EEMD-PCA-LSTM滚动轴承故障识别与分类方法的研究
滚动轴承在发生故障时,故障振动信号具有非稳定性、非线性的特点,难以对其中的故障特征进行提取,导致轴承故障诊断的识别率较低。为了提高滚动轴承故障分类的准确率,提出了一种基于集合经验模态分解法(Ensemble Em pirical Mode De com pos ition, EEMD)与长短时记忆(Long Short Te rm Me m ory, LSTM)神经网络相结合的滚动轴承故障识别的方法。首先采用EEMD算法将目标振动信号分解成若干个本征模态函数(Intrinsic Mode Function, IMF)分量。然后利用主成分分析法(Principal Component Analysis, PCA)对IMF分量进行降维,选取含有主要故障特征信号的分量。最后计算IMF主成分分量占各自总能量的比例,并将能量比所组成的特征向量作为LSTM神经网络的输入参数进行故障识别。将识别的结果与不同的故障诊断模型所得的结果进行对比分析,仿真结果表明文中所用的方法在轴承故障诊断中准确...
经验模态分解结合功率谱方法在轴承故障诊断中的应用
经验模态分解(EMD)方法具有自适应性特点,适用于非平稳、非线性信号的处理。针对轴承故障信号微弱及非平稳的特点,提出了基于经验模态分解结合功率谱的方法来提取轴承故障信号。试验研究中利用电火花加工方法分别在两个轴承上的外圈及滚动体上加工出凹坑,模拟早期剥落故障,并在试验台上获取振动信号。采用传统傅里叶变换方法分别对这些信号进行处理,不能得到有用信息,而采用EMD结合功率谱的方法能有效提取出试验轴承的外圈及滚动体特征频率。对比结果表明了经验模态分解结合功率谱方法对轴承早期故障诊断的有效性。
-
共1页/3条