管道机器人超声测量轮廓重建方法的研究
针对大型管道内生物附着物状态的高精度测量需求,提出一种利用齐次变换的轮廓重建方法,通过坐标变换使偏移轮廓的坐标校正回准确轮廓的坐标,消除运动位置偏差引起的轮廓测量误差。通过建立管道超声测量实验装置进行实验验证,得到偏移重建后产生的绝对误差为9 mm、相对误差为2.36%,偏转重建后产生的绝对误差为6 mm、相对误差为1.6%,误差落在超声检测系统的厘米级分辨率之内。后续可以通过提高超声检测系统的分辨率提高轮廓检测精度。该方法可以应用于水下管道轮廓检测以及水下机器人基于轮廓的自动定心探测。
∅ 610管道检测机器人速度控制装置研究
针对目前常规管道检测机器人在大流速天然气管道内由于运行速度过快而导致无法应用的问题,提出利用速度控制装置对管道机器人进行主动调速。设计∅610管道机器人速度控制装置,并对其开展了静态试验、动态试验和工业试验研究。静态试验压力可到10 MPa,有效检验了速度控制装置泄流阀在高压运转情况下的密封性及动作准确性。动态试验结果表明:∅610速度控制装置泄流阀开启量在1/2区间对速度控制装置产生的压差影响最为明显,当泄流阀开启量超过2/3区间对速度控制装置产生的压差影响很小。工业试验针对带固定泄流孔的管道机器人启动力问题,测试了泄流阀开启固定泄流面积时的启动力,建立了泄流状态下机器人启动压差方程,并测试了速度控制装置的实际降速能力,为大口径、大流速工况下管道检测机器人的调速技术提供了理论和试验基础。
油气管道内检测器三维运动分析
管道检测清管器广泛应用于油气管道内部检测。管道清管器的速度通常与管道中介质的速度相同。但近年来,由于长距离运输的需要,管道中介质的速度不断增加,管道内环境更加复杂,管道检测器在管道内的运动情况更加多变。因此,通过分析管道检测器在油气管道内的运动原理,建立了检测器在复杂管道下的运动模型;同时,基于数学模型,设计了一种双皮碗-三支撑轮式的管道检测器样机;结合仿真和实验,对管道检测器的运动情况展开模拟和研究。实验结果验证了所建立的检测器运动模型的准确性,为之后管道检测器的运动、姿态控制提供了理论研究基础。
基于虚拟仪器平台的压力管道检测技术应用研究
简要的介绍了虚拟仪器技术的概念和特点,给出了利用虚拟仪器技术及IabVIEW软件进行压力管道无损检测系统上位机平台开发研究的实例,是对于压力管道检测软件虚拟仪器化的一个有益的尝试,有助于提高检测工作的效率和有效性.
管道检测中管道定位系统的研究
管道的安全性在油气传输中有着非常重要的地位,为了优化和改进我国管道检测技术,本文对检测装置的定位进行了研究。系统基于惯性原理,由惯性器件测得检测装置的位移信息,存储器存储检测装置的位移数据,然后软件可完成管道的轨迹数据和缺陷检测数据的结合。实验证明此方法可行。
阵列式脉冲远场涡流管道缺陷检测方法
针对采用单个检测线圈在管道缺陷检测中存在的检测分辨力较低的问题,研究了管道缺陷定量检测中的阵列式脉冲远场涡流检测技术。利用有限元仿真的方法对阵列传感器结构进行了优化设计,并且分析了不同深度缺陷对感应电压信号的影响规律。最后通过实验对仿真结果进行了验证,实验结果表明本文设计的阵列传感器具有较高的检测精度和灵敏度,可以实现对管道缺陷的定量检测。
基于改进BP神经网络算法的管道缺陷漏磁信号识别
海底管道漏磁检测信号处理的主要任务是根据霍尔传感器检测到的缺陷漏磁信号来识别缺陷的形态参数.根据漏磁检测原理设计了相关的漏磁检测电路,通过提取信号的主要特征量,利用Levenberg-Marquardt算法在对常用BP神经网络改进的基础上应用其来识别缺陷的尺寸参数,给出了BP神经网络各层数的确定及权值、学习率的调整方法和相应的漏磁信号数据处理过程.漏磁检测数据处理实验表明,该缺陷识别BP神经网络系统具有逼近精度高、收敛速度快等特点.
管道腐蚀缺陷超声导波检测数值模拟研究
简述管道导波检测理论基础。运用有限元分析法,对目前现场检测中应用的L(0,2)及T(0,1)模态导波在管中传播过程进行数值模拟研究。在模型的特定部位删除部分单元模拟腐蚀缺陷,分别对管一端加载轴向和切向瞬时位移载荷模拟L(0,2)模态和T(0,1)模态入射波,计算得到管道的瞬时动力学响应,对回波信号作频谱分析。计算结果表明,缺陷位置可以根据缺陷处回波信号到达时间和波速确定。给出缺陷回波反射系数与缺陷横截面积各影响因素之间的关系曲线,可以近似判定缺陷的几何尺寸。并提出以回波信号对缺陷横截面尺寸大小的综合灵敏度来检测、评价管道腐蚀缺陷的思路。
突发型声发射信号的传播特性及定位研究
针对常规无损检测方法只能对管道静态缺陷进行检测的问题,该文研究了基于声发射的压力管道动态缺陷检测方法。在实验室条件下,对一条长15m、直径φ100mm的不锈钢管道进行了裂纹检测及定位实验,研究了声发射波通过不同管道特征(如焊缝、法兰、支路、变径)时的衰减情况,以及特殊管道附属结构对缺陷定位的影响。并分别采用定时参数补偿、实测波速补偿和衰减特性补偿等方法对缺陷定位计算结果进行了修正。
蠕动式管道机器人结构设计与运动特性分析
为提高管道机器人在管道内行走的安全性及可靠性,本文针对管径为457 mm的天然气运输管道,设计一款液压驱动蠕动式爬行管道检测机器人,用以对管道内壁的损伤及管体腐蚀开裂情况进行离线检测。根据管道内工况需求,利用蠕动爬行原理对管道机器人整体结构设计。计算管道机器人的驱动能力和越障能力,并采用多体动力学仿真技术对其进行分析,得出管道机器人运行过程中所能达到的最大驱动力及能够通过的最大障碍高度,并制作了物理样机并对其各项性能进行测试。结果表明:管道机器人的运动特性与理论分析结果一致,机器人运行过程平稳可靠,能够保证足够的管道通过性能及驱动能力,可实现复杂工况下的运行和检测。
-
共1页/10条