基于时间子序列的轴承特征提取方法
尽管纯粹的时域等特征有着提取速度快和物理意义明确的优点,但诊断准确性却略逊于其他方法。针对这一问题,提出了一种将词包模型和时间子序列(Based On the Time Subsequence,BOTS)相结合的轴承特征提取方法。首先,用滑动窗口在振动信号中滑动,得到多段连续的、非平稳的时间序列,并将其看作一篇篇文档。针对每一个时间序列,随机截取多个固定长度的连续子序列,求取子序列的时域或者频域特征;然后,用随机森林算法统计每一个时间序列中所有子序列的类别票数情况,基于类别票数情况构建词典;最后,将词典作为新特征,输入随机森林分类器进行训练学习,并利用西门子中国研究院无锡创新中心SQI-MFS实验平台、东南大学以及机械故障预防技术学会提供的轴承数据进行了多种实验。实验表明,BOTS+小波包能量方法提取的特征具有更高的识别度。
基于二次迁移学习和EfficientNetV2的滚动轴承故障诊断
针对工程实际故障诊断环境下,可用数据稀缺,导致智能诊断模型对轴承健康状态识别精度较低这一问题,提出一种基于二次迁移学习和EfficientNetV2(Two-Step Transfer of Efficient⁃NetV2,TSTE)的滚动轴承故障诊断新方法。首先,将模型在轴承全寿命周期数据集中训练,之后冻结模型浅层权重,将其在多工况轴承数据集中训练,进行第一次迁移学习。其次,通过构造类不平衡数据集,研究实际故障环境下可用数据稀缺对故障诊断性能的影响。然后,基于合成少数类过采样技术(Synthetic Minority Oversampling Technique,SMOTE)过采样方法与编辑最近邻(Edited Nearest Neighbors,ENN)欠采样方法对故障数据进行扩充,使类不平衡数据集重构为类平衡数据集。最后,将模型在类平衡数据集中训练,冻结模型底层权重,训练模型深层,进行第二次迁移学习,使模型掌握平衡数据集故障特征。通过多种指标进行实...
基于MOMEDA与Teager能量算子的滚动轴承故障诊断
滚动轴承早期故障信号中原始冲击成分容易被强噪声淹没,故障特征提取难度较大。针对这一问题,提出了多点最优调整的最小熵解卷积(MOMEDA)与Teager能量算子相结合的滚动轴承故障诊断方法。利用MOMEDA算法对原始故障信号进行滤波处理,通过Teager能量算子增强解卷积信号中的冲击特征,对信号进行包络分析。通过对比包络谱中的主导频率与滚动轴承的故障特征频率判断故障位置,实现轴承的故障诊断。仿真数据与试验数据分析结果表明,该方法能够有效提取故障信号中的特征信息,具有一定的实用性。
基于MEMD与MMSE的滚动轴承退化特征提取方法
针对滚动轴承故障信号的非平稳性特征以及其退化状态难以识别的问题,提出了基于多维经验模态分解(MEMD)与多元多尺度熵(MMSE)的退化特征提取方法.该方法利用多维经验模态算法在多尺度化过程中能够有效地捕获信号不同尺度的成分的特性,更好地区分了不同退化状态的复杂度.首先,利用MEMD算法对滚动轴承不同退化状态对应的多通道信号进行同步自适应分解;然后,对多尺度IMF分量重构的信号进行多元多尺度熵分析.对试验信号进行处理,结果表明,该方法能有效反映滚动轴承退化趋势.
基于MCKD与小波包熵的齿轮箱轴承微弱故障信号提取
针对齿轮箱轴承故障信号含有大量噪声而特征难以提取的问题。文章提出一种基于MCKD(最大相关峭度解卷积)和小波包熵值相结合的齿轮箱微弱故障信号提取方法。首先根据MCKD对故障信号进行降噪,突出信号中的有效冲击成分。然后进行小波包分解得到包含故障特征成分的末层节点信号,并以互相关系数-小波包熵值为准则对最后一层节点信号进行筛选并获取敏感节点信号,最后通过对敏感节点信号进行重构从而获得降噪后的轴承故障信号。实验结果表明该方法能够很好的滤除信号中的噪声并且准确地提取故障信号中的冲击成分,是对齿轮箱微弱故障特征提取的一种新方法。
基于LFSS和改进BBA的滚动轴承在线性能退化评估特征选择方法
在滚动轴承性能退化评估中,不同工况会影响振动信号特征对故障程度的敏感性,在早期有限样本中选择适用于状态评估的有效特征是实现在线评估轴承性能退化程度的关键。首先提出一种基于均方根的早期有限样本判定方法 Limited Feature Select Sample(LFSS),其次提出一种针对性能退化评估特征选择的改进Binary Bat Algorithm(BBA)算法——Feedback Seeking Binary Bat Algorithm(FSBBA),将其应用于滚动轴承早期有限样本中进行故障特征选择,克服了原始BBA容易陷入局部寻优的缺点。基于LFSS与FSBBA算法,构建了滚动轴承在线状态评估模型,并将其运用于两例滚动轴承全寿命数据特征选择,性能退化评估指标分析结果表明了所提出方法的有效性。
基于EMD和改进Teager能量算子的轴承故障诊断
为实现在非线性非平稳的轴承振动信号中提取出故障特征频率,提出了一种经验模态分解(EMD)和改进的Teager能量算子(NTEO)相结合的故障诊断方法。首先通过EMD将振动信号分解为若干阶本征模态分量(IMF),计算各阶IMF的峭度和与原信号的相关系数,利用峭度和相关系数均较大的IMF进行信号的重构,然后利用NTEO计算重构信号的瞬时Teager能量序列,最后对能量序列进行FFT变换,提取轴承的故障特征频率。分别对轴承内圈和外圈故障的振动信号进行分析,清晰地提取出了故障特征频率,并通过与传统Hilbert包络谱和Teager能量谱进行对比,验证了方法的有效性。
基于ELMD和MED的滚动轴承早期故障诊断方法
针对滚动轴承早期故障振动信号的非平稳特性和现实中受环境噪声影响严重,故障特征信息难以识别的问题,提出基于ELMD和MED的故障诊断方法。首先,运用ELMD对采集到的轴承振动信号进行分解,得到一系列PF分量;然后,依据相关系数与峭度准则,选取包含故障特征信息较丰富的PF分量进行MED滤波处理以消除噪声影响,凸现故障特征信息;最后,对降噪信号进行Hilbert包络谱分析,从谱图中准确地识别轴承故障特征频率。
基于Dirichlet过程混合模型的滚动轴承运行状态识别
针对滚动轴承的运行状态识别问题,利用典型D P混合模型良好的聚类特性,提出了基于DPMM的滚动轴承运行状态识别算法,并推导了算法聚类的详细步骤。利用轴承状态监测数据进行了验证和分析,结果表明DPMM算法不依赖于训练样本,模型结构能够随着观测数据的变化实现自适应变化和动态调整,自动识别轴承的运行状态数;同时,识别结果不依赖于DPMM算法初始参数的选择,具有较强的稳定性和适应性。
基于DT-CWT的轴承故障诊断方法
滚动轴承工作环境往往复杂多变,在对轴承进行故障检测时振动信号中夹杂大量的噪声,严重影响轴承故障的有效诊断。针对轴承故障信号的降噪问题,提出了一种将双树复小波变换(DT-CWT)和经验模态分解相结合的轴承故障诊断方法。该方法首先采用DT-CWT将非平稳的故障信号进行分解,得到多个不同频带的分量;然后将得到的小波分量用经验模态技术进行分解,从而得到各小波的主频率分量信号。仿真结果表明,该方法能有效提取强背景噪声下的故障特征信号,能够有效地识别轴承中不同故障类型。