基于改进ACCUGRAM的滚动轴承故障诊断方法
滚动轴承故障信号的特征容易被强噪声淹没,难以提取信号中的冲击成分。针对这一问题,提出多点最优调整的最小熵解卷积(MOMEDA)优化的ACCUGRAM算法,并应用于滚动轴承故障诊断。首先利用MED算法对原始信号进行滤波预处理,突显信号中的有效循环冲击成分,提高MOMEDA优化ACCUGRAM算法中频带选择的分类精度,选择最佳的带宽和中心频率,最后对获得包含信息量最大的频带进行故障特征频率的提取和轴承的故障诊断。仿真和试验数据分析结果表明:该方法能够有效提取信号中的周期性冲击特征,具有一定的实用性。
基于MOMEDA与Teager能量算子的滚动轴承故障诊断
滚动轴承早期故障信号中原始冲击成分容易被强噪声淹没,故障特征提取难度较大。针对这一问题,提出了多点最优调整的最小熵解卷积(MOMEDA)与Teager能量算子相结合的滚动轴承故障诊断方法。利用MOMEDA算法对原始故障信号进行滤波处理,通过Teager能量算子增强解卷积信号中的冲击特征,对信号进行包络分析。通过对比包络谱中的主导频率与滚动轴承的故障特征频率判断故障位置,实现轴承的故障诊断。仿真数据与试验数据分析结果表明,该方法能够有效提取故障信号中的特征信息,具有一定的实用性。
-
共1页/2条