基于二次迁移学习和EfficientNetV2的滚动轴承故障诊断
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
9.20 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对工程实际故障诊断环境下,可用数据稀缺,导致智能诊断模型对轴承健康状态识别精度较低这一问题,提出一种基于二次迁移学习和EfficientNetV2(Two-Step Transfer of Efficient⁃NetV2,TSTE)的滚动轴承故障诊断新方法。首先,将模型在轴承全寿命周期数据集中训练,之后冻结模型浅层权重,将其在多工况轴承数据集中训练,进行第一次迁移学习。其次,通过构造类不平衡数据集,研究实际故障环境下可用数据稀缺对故障诊断性能的影响。然后,基于合成少数类过采样技术(Synthetic Minority Oversampling Technique,SMOTE)过采样方法与编辑最近邻(Edited Nearest Neighbors,ENN)欠采样方法对故障数据进行扩充,使类不平衡数据集重构为类平衡数据集。最后,将模型在类平衡数据集中训练,冻结模型底层权重,训练模型深层,进行第二次迁移学习,使模型掌握平衡数据集故障特征。通过多种指标进行实验评估,同时与其他方法进行对比,并使用Grad-CAM方法进行了特征可视化。结果表明,所提方法能够将模型在实验室环境下积累的故障诊断知识应用于实际工程设备,适用于检测数据稀缺情形下的滚动轴承故障诊断。相关论文
- 2023-01-22蜗杆传动的分析与探讨
- 2020-10-08一种减速机用的新型易装卸法兰连接结构
- 2020-07-15两种结构形式起升机构配件设计选型
- 2020-10-03螺旋焊管成型用轴承辊的润滑
- 2021-01-12基于Hertz-Mindlin接触模型的摩擦界面颗粒剪切膨胀特性研究
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。