基于二次迁移学习和EfficientNetV2的滚动轴承故障诊断
针对工程实际故障诊断环境下,可用数据稀缺,导致智能诊断模型对轴承健康状态识别精度较低这一问题,提出一种基于二次迁移学习和EfficientNetV2(Two-Step Transfer of Efficient⁃NetV2,TSTE)的滚动轴承故障诊断新方法。首先,将模型在轴承全寿命周期数据集中训练,之后冻结模型浅层权重,将其在多工况轴承数据集中训练,进行第一次迁移学习。其次,通过构造类不平衡数据集,研究实际故障环境下可用数据稀缺对故障诊断性能的影响。然后,基于合成少数类过采样技术(Synthetic Minority Oversampling Technique,SMOTE)过采样方法与编辑最近邻(Edited Nearest Neighbors,ENN)欠采样方法对故障数据进行扩充,使类不平衡数据集重构为类平衡数据集。最后,将模型在类平衡数据集中训练,冻结模型底层权重,训练模型深层,进行第二次迁移学习,使模型掌握平衡数据集故障特征。通过多种指标进行实...
-
共1页/1条