一种新的盲声源信号分离方法及其应用
从盲声源信号的独立性出发,提出了一种新的盲声源混合信号分离方法.该方法基于信号联合概率的分布统计,利用信号联合概率的方向导数熵最小获得最佳的旋转角度,最终实现盲信号分离.与快速独立分量分析方法及神经网络方法相比,该方法不需要迭代计算.采用新的盲声源信号分离方法对轴承试验台的混合声音信号进行识别,将电机和滚动轴承的声音分离出来,进而可以准确识别机械的故障.
语音信号识别基于盲源信号分离的实现
为了识别两路频谱混叠语音信号,多采用盲信号分离的方法。但是该方法在工程实践中实现较困难。因此给出了一种利用盲源信号分离的原理及特点的实现方法,具体说明了用FastICA算法在ADSP_BF533平台上实现盲源信号分离时的具体流程。该设计方案所需时间短,效率高,而且占用内存较少。
-
共1页/2条