变形镜及其驱动器的动态响应测试研究
变形镜是自适应光学系统中的关键部件之一,它的动态响应性能直接决定了其对大气扰动的校正能力。提出了一种基于光电倍增管的测试方法,用于对变形镜及其高压驱动器进行动态响应测试。测试表明,变形镜的谐振频率优于12kHz,促动器及其驱动器可以不失增益的工作到2kHz。
实验室环境内傅里叶望远镜技术的实现
为了验证傅里叶望远镜技术的成像可行性,进行了实验室环境下的实验验证。通过不同空间频率的条纹扫描目标获取包含目标傅里叶信息受时间调制的回波信号,利用傅里叶解调及相位闭合技术获得目标的频谱图,并通过二维傅里叶逆变换得到重构的目标图像。最后,给出3mm目标的实验重构结果,并与计算机仿真结果进行比较。实验结果表明,在实验室环境下傅里叶望远镜成像结果与计算机仿真结果吻合较好,该结果可作为后续的实验室标定和外场实验的参考。
米级车载高分辨率光电成像系统光学设计
研究了一套能实现机动式布站的米级车栽可见光和红外高分辨率光学成像系统新方案.主系统口径1.2m,采用无焦卡塞格林形式,遮拦比1:10;机上中、长波红外成像通道采用共口径光谱分光、二次成像的形式,冷阑匹配效率100%,F数为4;机下成像光学系统焦距47m,F数为39,光学设计满足高分辨率与白天成像的要求,且成像质量达到衍射极限;各通道光学系统结构紧凑.光学设计与分析结果表明:该套光学系统能够用于空中和空间目标的全天时移动式高分辨率可见、红外成像.
长焦距超高倍率变焦距光学系统设计
为设计一套焦距17~1700 mm的长焦距、超高倍率变焦距光学系统,首先在合理选择初始结构基础上,通过比较高斯光学计算结果找出高斯解对系统性能的影响规律,从而确定系统的关键参量;然后通过分析各组元相对孔径和像差特点选定结构形式,并进行系统像差的校正和优化.设计结果系统光学总长760 mm,各焦距位置全视场50 lp/mm处mtf>0.3,各项指标满足系统要求.
傅里叶望远镜外场实验与结果分析
为了分析外场环境因素对傅里叶望远镜成像质量的影响和验证成像过程不受下行链路大气扰动影响的特点,开展了傅里叶望远镜外场实验研究.外场实验在室内实验的发射光学系统的基础上增加了主镜、次镜和会聚透镜组对目标散射光进行3次会聚仿真实际系统的成像过程,同时将目标与主镜、主镜与次镜分别拉开100m距离验证成像系统不受下行链路大气扰动影响的特点.实验利用胶片打印的2种不同的卫星图片作为目标,获得了Strehl值分别为0.44、0.39的无大气扰动的外场重构图像和Strehl值分别为0.43、0.38的含大气扰动的外场重构图像.通过比较外场重构图像与室内重构图像的Strehl值,得出发射光学系统中光束的振动对成像有较大影响.分析发现无大气扰动外场重构图像与含大气扰动外场重构图像的Strehl值相近,从而验证傅里叶望远镜成像过程...
拼接镜主动光学共相实验
考虑拼接望远镜子镜之间保持共相位可使拼接镜达到衍射极限,本文建立了一套主动光学实验系统来测量和调整拼接镜子镜之间的相位差和精度以实现子镜之间的共相位。拼接镜由3块正六边形球面子镜组成,子镜对边长为300mm,曲率半径为2000mm。首先,使用Shack-Hartmann传感器和高精度微位移平移台使子镜之间精确共焦,使用球径仪调整子镜之间的高度差到微米量级;然后,运用白光斐索干涉原理对子镜高度差进行调整;最后,运用子孔径衍射原理测量子镜之间的高度差,并调整使其共相位。为了验证标定效果,对光纤光束进行了成像实验,受光纤直径的限制,拼接镜上用于成像的口径为100mm。实验结果显示,白光斐索干涉的测量精度优于100nm,子孔径衍射的测量精度优于16nm,共相位标定后,系统能够实现衍射极限成像,表明提出的方法适用于拼接望远镜的共相位标定。
捆绑式望远镜图像信噪比测量及分析
为了满足空间暗弱目标探测对大口径、短焦距望远镜系统的要求,克服普通望远镜随着口径的增加焦距变长、视场变小的不足,提出了将多镜筒捆绑在一起对同一空域进行观测,通过软件的方式对采集的图像进行叠加来抑制背景随机噪声、提高图像的信噪比和系统的整体探测能力的设想。为了对上述设想进行验证,利用4台110nm望远镜搭建了捆绑式望远镜系统实验平台,通过实际观测及事后处理验证了该设想并给出分析结果。实验结果表明:图像信噪比平均提高1.58倍,探测能力近似提高0.5个星等.证实了该技术在保持对应焦距不缩小的前提下.可以提高系统的探测能力。
400mm薄镜面主动光学实验系统
采用400mm口径,12mm厚的球面反射镜进行了主动光学实验。实验镜支撑结构由背部12个主动支撑点和3个固定支撑点组成。主动支撑点用压电陶瓷促动器和压力传感器组成力促动器,用于控制实验镜面形;固定支撑点用于控制实验镜的定位。实验中通过干涉仪测试镜面面形。分别测量出反射镜在单独一个促动器施加单位作用力前后的镜面面形,求出这两个面形之差得到该促动器的响应函数,由各促动器的响应函数组成刚度矩阵,然后用阻尼最小二乘法计算各支撑点的校正力。最后,通过PID算法闭环控制各促动器施加力的过程。经过3次校正,将初始状态的1.22XRMS的面形误差校正到0.12kRMS,接近了镜面加工的0.1XRMS面形精度,说明所采用的主动校正算法和过程正确可行。
大口径望远镜波像差的外场检验方法
为在外场环境下对大口径望远镜进行系统波像差的检验,研制了一套具有高探测能力的shack-hartmann波前传感器.利用恒星作为光源,对口径1m、焦距11m的大口径望远镜进行了波像差检验实验,测量结果为系统波像差在0.39λ~0.46λ rms之间,且随着俯仰角的增加而增大,主要像差形式为3阶0°像散,与星点检验的结果一致.
基于干涉仪测量的变形镜面形展平标定研究
为了全面地了解变形镜的性能,以便自适应光学系统更好地工作,进行了基于干涉仪测量的变形镜面形展平标定研究,首先,给变形镜的压电陶瓷驱动器施加一半的控制电压;再用zygo干涉仪测得变形镜的面形,计算对应各个驱动器位置的镜面高度,并算得各个位置镜面高度相对平均镜面高度的偏差;最后,控制驱动器运动使偏差量为零.测试及实验表明,受压电陶瓷迟滞的影响,上述过程需要迭代4到6次镜面面形才会收敛到希望的准确度;对镜面周边无驱动器约束的21单元变形镜,展平之后其80%口径的面形接近λ/20(λ=632.8 nm);对镜面周边有驱动器约束的137单元变形镜,展平后的面形优于λ/50.在望远镜不同的观测条件下,该技术可以快速地对变形镜进行展平标定,以适应不同的工作环境.