Sagnac棱镜对旋对光谱仪光谱分辨率影响的校正方法
Sagnac型静态干涉成像光谱仪中,Sagnac棱镜的加工对旋误差对仪器的光谱分辨率会造成一定影响,甚至会引入虚假谱信息。为了进一步提高光谱仪的光谱分辨率以及校正虚假谱,重点推导了Sagnac棱镜在加工过程中由不对称半五角棱镜在胶合过程中产生的对旋误差与由该误差而引起的棱镜剪切量变化之间的关系,分析了对旋误差对光谱仪重构光谱的影响,提出了采用Forman卷积法对该影响进行校正的方法。采用氢灯进行实验,结果表明,该校正方法对虚假谱的抑制作用明显,且可显著提升光谱分辨率。
移相器类进动现象对干涉测量的影响
压电晶体(PZT)光学移相器作为移相干涉仪(PSI)的关键部件,其移相误差直接影响被测波面的相位复原精度。分析了压电晶体移相器在移相过程中导致干涉图旋转的原因——类进动,其本质是移相器在伸长的同时其参考镜端面法线方向绕着伸长方向产生旋转。利用典型的Hariharan五步移相算法。得出了类进动现象所导致的波面相位复原误差计算公式,给出了在测试孔径上的误差分布图。对影响误差大小的主要因素如干涉条纹的宽度、旋转的角度和测试口径等进行了具体分析,由此推导出在移相干涉仪光学调整过程中控制干涉图旋转误差的准则。
光纤激光干涉测速
为了测量运动物体的速度,基于多普勒效应构建了光纤速度干涉仪.系统由光源发射器与接收器、非对称马赫-曾德尔光纤干涉仪、光电接收系统、数据处理4个部分组成.光电接收探测器采集不同时刻运动物体的反射光波形成的干涉条纹,通过对数据进行分析和计算,获得运动物体的运动速度和加速度剖面.在霍普金森杆测量实验中,为获得具有良好对比度的干涉条纹,激光光源谱带宽应优于50kHz,功率稳定度为0.07dB,测速范围和测量精度由光纤干涉仪的延迟光纤长度决定.干涉仪的标定可通过测量延迟光纤长度为100m时的条纹常数来实现.测量结果表明,由干涉信号求得的膛口速度和由光触发脉冲求得的膛口速度之间的误差在1‰以内.
光学移相干涉仪抗振系统的鲁棒μ控制器设计
将结构奇异值u综合鲁棒控制技术应用于主动抗振控制系统中,并用于解决光学移相干涉仪抗振系统的不确定性问题.采用小波分析方法将随机振动信号进行时频分析后得到低频全局信息,随后运用u综合D-K迭代法设计鲁棒u控制器对低频振动进行抑制.该方法克服了由模型自身和外部干扰所引起的不确定性,使得控制系统能够有效地抑制抗振模型的不确定性和外部振动的干扰,同时也具有很高的控制准确度和灵敏度.仿真结果表明,该方法使光学移相干涉仪在外部振动的干扰下具有较好的鲁棒稳定性和控制准确度,同时也能较好地抑制低频振动.
斜入射干涉检测大口径碳化硅平面反射镜
采用自行研制的口径为600 mm的近红外相移平面干涉仪在斜入射条件下对大口径碳化硅(SiC)平面反射镜进行了绝对测量。首先,在一个标准的斐索干涉测试结构中测出空腔波面数据;然后,将被测平面置于干涉光路中,使被测件光轴与干涉仪光轴成α角,测得第二组波面数据。对两组波面数据处理后得到SiC平面反射镜中心垂线方向的绝对面形分布。最后,测量了630 mm口径SiC反射镜多条垂线方向的绝对面形。结果显示,中心垂线处的绝对检验PV值为0.061λ,RMS为0.014λ。实验结果表明,该测量装置可以实现比干涉仪有效口径大的光学平面垂线方向的绝对面形检测,尤其适用于镀有高反膜的光学表面或者金属表面等面形的绝对测量。
干涉仪自适应抗振的空间移相术
根据时域移相算法的概念,提出了一种空间移相术,它能够检测因外界振动导致条纹抖动而引起的干涉图样的空间相位变化.运用这种技术在Twyman-Green移相式干涉仪中建立了一套自适应抗振系统,它可以实时测量振动引起的相位变化大小,并通过反馈器件PZT实时校正干涉条纹的相位,使得干涉条纹稳定以保证光学测量的正常进行,与此同时PZT还作为移相器件.
干涉仪环境振动的外差检测与自适应控制
测试环境的微振动干扰会引起干涉图的抖动,影响移相干涉仪的测量准确.设计了一种内嵌于移相干涉仪的外差测振光路,对干涉仪所受环境微振动进行实时检测;采用单片RF/IF集成芯片对两路40 MHz的模拟外差信号直接进行比相,简化了通常使用的数字测相方法.在测得环境振动信息后,运用DSP技术和自适应信号处理的方法,实现了基于PZT移相器的自适应振动控制,实验结果表明干涉仪对幅频积不大于100 wavesHz的环境振动的抑制能力达-39 dB.
锥体棱镜最佳工艺参数研究
借助于Matlab和Zemax等数学工具,详细研究了锥体棱镜的各个加工要素.结合实际使用的情况确定了最佳工艺参数.研究结果已被生产采用,并取得了较好的经济效益.
移相干涉仪环境微扰的外差检测及信号处理
对环境微振动干扰进行补偿可减小移相干涉测量的误差,其中振动量的检测是实现振动补偿的前提.以声光调制器作为光学移频器,在移相式平面干涉仪中组合成外差干涉测振系统,可以实现光程差微小变化(范围为0到1/2波长)的实时检测.在外差信号处理中采用单片RF/IF相位测量芯片直接对两路40MHz模拟信号进行比相,简化了通常使用的数字测相方法,其精确测相的典型非线性值小于1度.用该系统实际测量了周期性振动和地面冲击振动对干涉仪的影响,获得了干涉仪所受微振动的幅度和相位.
基于LMS算法的移相干涉仪环境振动控制器
环境振动严重影响移相干涉测量的过程。在运用光学外差法测得移相干涉仪环境振动信号的前提下,设计了采用高速DSP芯片的振动控制器,它对电压形式的振动信号进行采样,用自适应LMS算法分析振动信号,同时输出反馈控制信号。反馈控制信号驱动PZT光学移相器对振动引起的光程差(或波前相位)变化进行实时补偿。通过这种闭环控制,系统能够对幅频积小于100waves^*Hz的环境振动进行有效补偿,实验中获得了稳定的移相干涉条纹,保证了光学测试的正确性。