单出杆液压缸位置伺服系统输出反馈控制
针对具有状态不可测的单出杆液压缸位置伺服系统,提出一种基于扩张状态观测器和鲁棒控制器的输出反馈控制算法。所构造的扩张状态观测器在观测系统状态的同时,对系统的匹配未知干扰进行估计,并在设计的控制器中进行主动干扰补偿,提高系统控制性能。理论分析表明,本文所提出的液压位置伺服系统输出反馈控制器能够保证闭环系统的所有信号有界,以及保证预定的瞬态和稳态跟踪性能,当系统不存在未知干扰时可使系统获得渐近跟踪性能。由仿真结果可见,系统跟踪误差最大约为0.03mm,相对跟踪误差约为0.02%,证明了所提算法的有效性。
基于虚拟分解的液压机械手RISE渐近跟踪控制
多自由度液压机械臂是一个多输入多输出、强非线性、强耦合的机电液复杂非线性系统,对液压机械臂精确控制是极富挑战的任务。提出一种基于虚拟分解的误差符号积分鲁棒控制方法用于液压机械手系统的高精度跟踪控制。考虑三关节之间的动力学耦合、液压作动器动态和摩擦效应,首先基于虚拟分解建立液压机械手的运动学和动力学数学模型,基于虚拟功率流保证子系统和整个系统的L2和L∞稳定性,设计虚拟控制方法。然后进一步将关节之间的耦合作用融入到鲁棒控制器设计之中,发展出基于虚拟分解的误差符号积分鲁棒控制方法,进一步增强了关节位置跟踪能力。基于Lyapunov理论证明该控制方法可实现位置跟踪误差的渐近收敛。对比仿真结果表明,提出的基于虚拟分解的鲁棒积分控制器具有优异的渐近跟踪性能。
航空发动机导叶控制机构作动筒主动容错控制
航空发动机导叶控制机构液压作动筒在高速、高温、变载荷等条件下发生故障时,会导致液压作动筒工作状态受限,引起系统实际的物理参数发生突变,进一步加剧了系统的参数不确定性以及未建模干扰,从而恶化整个系统的位置跟踪精度,严重时使航空发动机失稳。为提高航空发动机导叶控制机构液压作动筒在故障发生时的控制性能与容错能力,提出了一种积分鲁棒自适应主动容错控制策略。为减小参数不确定性,提出了一种基于参数估计误差与跟踪误差的复合参数自适应律,不仅可以实现参数的快速收敛,还提高了系统的主动容错能力。为消除参数不确定性与抵抗外干扰,利用积分鲁棒反馈思想发展了一种积分鲁棒自适应主动容错控制,进一步增强了液压作动筒的容错能力与位置跟踪能力。基于Lyapunov理论,证明了该主动容错控制策略在外干扰下能实现系统位...
机电伺服系统L1自适应控制
机电伺服系统存在较多不确定性,制约了系统性能提升。已有非线性控制方法虽可处理系统不确定性,但往往不能满足系统高频跟踪要求,而传统线性频宽控制方法又往往缺乏主动补偿不确定性的手段。针对机电系统参数未知又受时变干扰的情形,设计了一种L1自适应非线性控制策略,不仅有效补偿了系统不确定性,而且实现了非线性控制器与线性频宽参数的一体化设计。鉴于L1自适应控制策略依赖全状态反馈,又对测量噪声敏感,进一步搭建了跟踪微分器,快速跟踪速度信号动态特性的同时抑制了噪声,针对机电伺服系统的特点实现了跟踪微分器与L1自适应控制的有效融合。最后,对比仿真结果验证了算法的有效性。
高压液压能源系统热特性及热控制仿真分析
高压液压技术是未来飞机液压系统的主要发展趋势,由于损耗功率增加,系统温度变化将更加剧烈并影响飞行安全,因此,高压液压系统的热特性与热控制技术是未来飞机液压系统设计需要考虑的一个重要因素。以某高压液压能源系统为例,对液压能源系统的主要液压元件进行生热和散热机理分析。利用AMESim软件开展液压系统温度特性分析,权衡系统是否需要热交换器。结果表明:热交换器有效降低系统油液温度至安全温度内;同时,得到燃油-液压油热交换器位于不同位置、系统在不同飞行阶段下不同环境温度、机翼处管路引入冷气流等工况下温度变化趋势,为飞机高压液压能源系统热设计提供参考。
电液伺服系统多模型鲁棒自适应控制
针对电液伺服系统中存在不确定非线性和强参数不确定性的问题,提出一种多模型鲁棒自适应控制算法。根据系统参数不确定性范围建立了多个辨识模型,在辨识模型中设计非线性鲁棒项,以抑制干扰、未建模动态等不确定非线性的影响,提高系统的鲁棒性。基于辨识模型设计相应的控制器,采用基于辨识误差的性能指标函数作为切换依据,选取最佳控制器作为当前控制器,解决了传统自适应控制对参数自适应初值敏感的问题。该方法能够克服不确定非线性和强参数不确定性的影响,使系统得到渐进跟踪的性能,提高系统的瞬态响应性能。实验结果表明,该算法能抑制建模不确定性的影响,系统期望跟踪指令幅值为10mm时,跟踪误差大约为0.038 6mm,相对跟踪误差约为0.386%,系统跟踪精度得到了提高。
基于自适应的电液负载模拟器积分鲁棒控制
为提高电液负载模拟器的跟踪精度,针对其存在的大量非线性特性和模型不确定性等问题,建立了系统非线性数学模型,基于传统的误差符号积分鲁棒控制方法,融合自适应控制的思想,设计了一种自适应误差符号积分鲁棒控制方法。该方法无需获知模型不确定性的确切界,其积分鲁棒增益的取值可在线调节,更好地克服了模型不确定性对系统的影响,在舵机运动干扰作用下实现了系统的渐近稳定性能。仿真对比结果验证了该控制方法的优良性能。
具有状态约束的电液伺服系统模型参考鲁棒自适应控制
针对电液伺服系统中的模型不确定性和状态约束问题设计了一种模型参考鲁棒自适应控制(MRRAC)方法。将电液伺服系统的近似模型作为模型预测控制(MPC)的设计对象在设计过程中考虑状态约束并生成受约束的状态期望作为后续伺服控制方法的参考指令。为了克服液压系统中的模型不确定性基于反步法设计了鲁棒自适应控制器(RAC)实现了兼顾模型不确定性和状态约束的伺服控制。基于Lyapunov稳定性理论证明了所设计控制策略的闭环渐近稳定性且系统所有信号均有界。仿真结果表明控制器对于系统模型不确定性具有较强的鲁棒性且可实现对指定状态的有效约束充分验证了该控制策略的有效性。
具有自适应増益的电液位置伺服系统超螺旋滑模控制
电液位置伺服系统是复杂的非线性控制对象存在各种建模不确定性使得设计高性能的控制器以满足系统伺服精度要求更加困难.针对考虑各种建模不确定性的电液位置伺服系统设计了一种具有自适应增益的超螺旋滑模控制方法.利用已知的系统模型信息在传统超螺旋滑模控制算法中引人基于模型的前馈控制律提升系统伺服精度.采用自适应律实时更新控制器增益无需先获知系统建模不确定性的确切界避免了传统算法中由人为设定与该界相关的控制增益造成的保守性.基于Lyapunov稳定性理论证明了闭环系统全局稳定系统跟踪误差可在有限时间内渐近收敛到零附近任意小的范围内且收敛的速度和稳态误差的界可通过参数进行调节.仿真结果表明所提出的控制方法可有效地抑制建模不确定性对系统的不利影响显著提高其跟踪精度且所得到的控制输入是连续
基于动态分配的多缸驱动承载平台的调平控制
针对多缸承载平台的高精度快速调平问题综合考虑多个活塞缸驱动承载平台系统中的偏心矩、缸内摩擦、泄漏的不确定性及油液缓慢时变特性提出将多级自适应控制与动态控制分配相结合保证平台质心位置不变实现高精度快速调平。对活塞缸存在的输出力约束及调平过驱动问题采用能量最小化且考虑输入约束的动态控制分配方法并以有效集算法进行求解实现各活塞缸受力的合理分配。车载快速调平仿真实例表明所设计的控制器能有效实现车载平台的高精度快速调平。该控制策略为解决多活塞缸驱动承载平台的调平控制问题提供了理论依据及实践参考。