液力变矩器一体化设计
在介绍CAD/CFD/CAM开发流程的基础上,详细地介绍了CFD方法的应用,包括三维理论建模、网格划分以及液力变矩器CFD稳态与动态模型的计算。研究以W305型与H245型液力变矩器为例,通过一体化设计与传统设计的比较,表明一体化设计方法具有准确的预测能力,可以提高液力变矩器一次设计成功率。
液力变矩器叶栅动量矩分配规律
基于液力变矩器叶栅传统一维束流理论的分析,对传统的等动量矩设计方法进行了改进研究,提出动量矩不等分配法。应用计算流体力学,针对泵轮、涡轮和导轮叶片的三种典型动量矩分配方案分别进行了计算比较,从而获得了液力变矩器叶片动量矩分配的基本规律。
液力变矩器叶片三维成型法及其性能分析
探讨了液力变矩器叶片三维成型方法,提出了叶片三维成型方法的基本设计流程。通过对不同参数变化规律生成的泵轮、涡轮、导轮的叶型进行对比分析,总结出液力变矩器叶片角变化对液力变矩器性能影响的基本规律。通过CAD/CFD技术完成叶片的设计和相应变矩器性能的计算。同时,通过与作为基型的W305型液力变矩器的比较,证明了研究结论的可靠性。
无级变速车辆起步液力变矩器分段滑差控制
本文中针对无级变速器车辆液力变矩器起步过程存在的加速性能差、发动机转速偏高和转速波动大的问题,提出了一种基于发动机恒转速控制的闭锁离合器起步滑差分段控制策略,并基于Amesim和MATLAB/Simulink搭建整车联合仿真平台,进行验证。仿真结果表明,在50%油门开度下,本文中提出的控制策略可将液力变矩器的闭锁时间提前1.2s左右,同时也可将50%油门开度起步阶段的燃油消耗节省5.385%,为进一步挖掘动力传动系统节油潜力提供了新的方法。
基于三维流动理论的液力变矩器设计流程
介绍了W 305型液力变矩器开发的过程。在基本几何参数一致的基础上,设计了5种液力变矩器叶栅系统方案,并且对包括W 305型液力变矩器比较基型在内的6种方案进行了稳态试验比较分析。对内流场进行了仿真分析,探讨了液力变矩器性能提高的本质原因。试验和仿真的结果充分证明了本设计方法的科学性和准确性。
起步工况液力变矩器闭锁滑差控制及滑摩温度
针对装备液力机械式自动变速器的车辆起步过程效率低的问题,提出起步工况液力变矩器闭锁离合器滑差控制技术,建立其滑差控制仿真模型,分析了不同油门开度时车辆起步性能.由于闭锁离合器滑摩时产生较大热量,容易使得摩擦衬片局部高温,建立考虑油槽结构的闭锁离合器三维瞬态热传导有限元模型,借助CFX软件,分析起步工况闭锁滑差控制时闭锁离合器摩擦片温度随时间的变化规律.结果表明液力变矩器闭锁离合器起步闭锁滑差控制技术在不影响车辆动力性的前提下可有效解决车辆起步时效率低的问题;当进行闭锁离合器闭锁滑差控制时,摩擦片的最高温升为40℃,如果工作油温度较低,摩擦片温度在允许的范围内,可以进行起步滑差控制;但当工作油温度高于100℃时,摩擦片瞬态温度已高于130℃,此时不宜进行闭锁滑摩控制.
工程机械液力变矩器现代设计方法及应用
为适应液力变矩器发展需要,突破传统设计方法的局限性,提高产品研发速率、降低开发成本、提高产品综合性能。在国内率先提出基于三维流动理论的液力变矩器现代设计方法,将计算流体力学CFD技术与激光可视流场分析技术进行无缝结合,突破可视化流场分析、叶片成形及三维瞬态流场计算等关键技术,解决了变矩器内部液体流动不可视、叶形空间复杂曲面成形等难题,创建了包括预设计、叶型设计、性能分析、参数调整、内流场测试、模具设计及样机制造环节等六个环节的设计方法体系。液力变矩器现代设计方法不但保证产品性能的最优化,同时提高了设计到产品的一次成功率,有效缩短了开发时间、降低开发成本,是对传统设计方法的重大突破。
液压电控离合器接合速度控制
详细介绍了液压离合器的结构及基本控制原理,提出基于单位控制周期内接合量反馈的闭环控制和基于脉宽调制(PWM)的开环控制两种离合器接合速度控制方法,并将其应用于AMT样车的开发实践中.
液力变矩器叶栅动量矩分配规律
基于液力变矩器叶栅传统一维束流理论的分析,对传统的等动量矩设计方法进行了改进研究,提出动量矩不等分配法。应用计算流体力学,针对泵轮、涡轮和导轮叶片的三种典型动量矩分配方案分别进行了计算比较,从而获得了液力变矩器叶片动量矩分配的基本规律。
液力变矩器叶片三维成型法及其性能分析
探讨了液力变矩器叶片三维成型方法,提出了叶片三维成型方法的基本设计流程。通过对不同参数变化规律生成的泵轮、涡轮、导轮的叶型进行对比分析,总结出液力交矩器叶片角变化对液力变矩器性能影响的基本规律。通过CAD/CFD技术完成叶片的设计和相应变矩器性能的计算。同时,通过与作为基型的W305型液力变矩器的比较,证明了研究结论的可靠性。