利用液体桥力的微球转移操作
为了克服粘着对微机电系统装配的影响,提出了一种利用液体桥力实现微球转移操作的方法.利用操作臂和微球之间的液体桥力实现微球的抓取,利用目标平面和微球之间的液体桥力实现微球的释放.对微球受力的理论分析表明,重力可以被忽略.由于干燥微球和粗糙平面之间的粘着力很小,抓取操作容易实现;释放操作要求操作臂末端的半径小,操作液体的界面能尽量低.使用该方法实现了一种微滚动导轨的装配,从而验证了该方法的可行性.
面向微操作的组合式微夹持器
基于宏微结合的设计思想,提出一种组合式微夹持器结构.采用微直线电机机构实现毫米级的宏运动,采用双晶片压电悬梁机构实现微米级的微运动.介绍组合式微夹持器的组成原理并对压电悬梁形变特性进行了有限元分析.在此基础上,开发微夹持器宏微控制系统,实现了微位移闭环控制.测试实验表明,该微夹持器具有结构紧凑、操作空间大、精度高的特点.
基于微操作的大行程高分辨率旋转微驱动器的研究
根据仿生学原理,采用分立式布局,研制出大行程高分辨率旋转微驱动器.该微驱动器采用电磁铁箝位、压电陶瓷驱动的爬行式步进机构形式,实现了光学镜面的二维微调整操作.实验表明,该微驱动器具有分辨率高、行程大、步距可变等特点,也适用于其它微操作中大行程高分辨率的旋转驱动.
具有力感知功能的四臂式MEMS微夹持器研制
为使夹持器小型集成化且夹持力可控,采用体硅加工技术研制了一种基于单晶硅的、具有微力检测功能的新型四臂式MEMS微夹持器。以压阻检测技术为基础,利用MEMS侧面压阻刻蚀工艺将力传感器集成在微夹持器的夹持臂末端,实现夹持力的微力检测。采用有限元软件分析,微夹持器机构和传感器弹性体,并通过S型柔性梁结构的设计将梳齿驱动的直线运动转化为夹持臂末段的转动,然后结合四臂式的末段结构,有效地扩展夹持器的夹持范围。利用硅玻璃键合技术实现夹持臂的电隔离,通过施加80V电压,夹持臂的单臂运动范围为25gm,夹持器的夹持范围为30~130gm。实验标定出传感器的最大量程在1mN以上,分辨率为3uN,可以实现夹持力的有效反馈。
远焦区聚焦性能分析与改善
传统聚焦测度函数在远焦区对图像高频能量解析性能较差;表现为聚焦曲线在远焦区呈现非单调性.利用傅里叶变换方法对图像频谱进行分析:在远焦区,聚焦图像序列的直流分量表现出强烈的波动性,并且直流分量在图像频谱中占据绝对比例,再加上传统聚焦函数滤除图像直流分量的能力较弱,导致误聚焦概率高.考虑到频域聚焦函数计算量大,提出基于时域的两个聚焦函数.实验结果表明:此二函数具有强的直流分量滤除能力,能有效改善聚焦曲线在远焦区的表现,同时具有高的聚焦分辨率.远焦区聚焦性能的改善对于提高显微视觉操作自动化的可靠性尤为重要.
面向微操作的宏/微精密定位技术研究
宏/微精密定位技术是微操作机器人的关键技术之一.在分析微操作机器人对宏微结合的精密定位技术需求的基础上,介绍了微米级宏动定位系统以及纳米级微动定位技术的实现方法.最后总结了压电陶瓷驱动纳米定位技术中的机构、驱动、检测、控制等关键问题的研究现状,并对微定位技术发展趋势进行了展望.
两级位移放大微夹持器的研究
微夹持器是完成微操作、微装配作业任务的重要工具,其体积、质量、张合量、微夹持力等是微夹持器设计过程中的重要指标.利用压电陶瓷作为微驱动元件设计了一种具有两级位移放大的微夹持器,并采用有限元软件对其进行张合量、微夹持力的分析.经实验测试,验证了所设计的微夹持器的合理性和实用性.
微/纳米冰镊操作器执行过程的数值模拟
冰镊是一种借助于针尖与作用对象之间形成的极微小冰晶来实现对物体灵巧操纵的微/纳米操作技术,应用该器件不仅可以实现如拾取、摆放等简单动作,更可以方便地实施如拉伸、旋转等复杂操作,且不受对象的形状、带电与否、重量、材料以及质地等限制,并可与其它机构结合,组成微观意义上的自动化设备.针对冰镊的工作原理,基于相应的流体力学及传热学数学模型,从数值计算角度对微纳米尺度下冰镊的执行过程进行了模拟,在此基础上可望更好地理解冰镊的工作状态及控制过程,从而有助于设计优化新的微/纳米冰镊器件.
一种新型微操作机器人机构的设计分析
当前在微操作领域,应用于细胞及更小单位的基因组织手术逐渐普遍,但其局限性在于缺乏优良的显微操作装备。基于此,提出一种可应用于显微操作的三转两移5自由度混联机器人机构。运用约束螺旋方法对机构展开了自由度分析;通过机构的几何约束关系求得机构的位置正反解,基于正反解得到机构的雅可比矩阵,证明了机构的非耦合特性;最后建立了机构的运动学模型,通过Matlab建立机构虚拟样机模型并仿真,得到机构末端的线性位移和角速度输出图像,验证了理论分析的正确性,为机构的实践应用提供了理论基础。
-
共1页/9条