新一代核级离心通风机气动设计与数值优化
本文采用离心通风机现代气动设计方法,选用效率高、噪声低的后弯叶轮,对核级风机进行初步设计并对风机内部流场进行三维数值模拟。通过分析风机全压、效率及内部流场,分别对风机叶片数目、叶片进口角、进口加速系数等参数进行优化,优化后风机效率达到87.74%,全压5 328.6Pa,符合设计要求。样机的性能测试结果表明,在设计工况下,离心风机的效率可达87%以上,数值模拟与试验结果符合,所设计的离心通风机效率、全压符合实际核电站大气安全壳内通风系统的使用要求。
多工况离心通风机的气动方案设计与验证
为解决CRH5型高寒动车组牵引辅助变流器风机国产化应用,以一种多工况离心通风机为研究对象,针对应用于动车组特殊使用条件,利用流体计算软件FLUENT,对该离心通风机的气动方案进行了设计及试验验证。通过合理选择叶轮直径、叶片进出口角度和最优化匹配集流器、蜗壳等方法,以提高整机高效工作范围,使之满足使用需求。研究结果表明该离心通风机具有多工况、高效、低噪的气动性能优点,各项技术指标达到国外同类产品的水准,成功实现该产品国产化。
基于Kriging代理模型的离心通风机叶片优化
为了提高离心通风机的气动效率,进而实现节能减排和保护环境,提出了一种基于Kriging回归的代理模型用于离心通风机的气动优化。首先,通过拉丁超立方采样设置初始样本点,构建样本点对应下的离心通风机结构模型;进而用CFX软件计算其结构参数对应下的气动性能响应参数;其次,构建Kriging回归的代理模型用于表征初始样本点参数与气动性能响应参数间的耦合对应关系;最后把代理模型嵌入到智能优化算法中,并以气动效率最大为目标进行函数迭代寻优,进而寻得最佳的叶轮结构参数,优化后风机的工况效率从76%提高到80.9%,气动效率明显提高。
一种离心通风机的导纳试验研究
对离心通风机安装架上减振垫处连接点进行了导纳试验研究。试验结果表明,在1/3倍频程频率范围为2~3150Hz内,该通风机与电力机车连接点处的导纳特性曲线总体变化比较平缓,达到了减振的设计效果。
离心通风机气动噪声数值研究的现状与分析
归纳与分析了离心通风机气动噪声数值研究的现状,对涡声理论在宽频噪声研究中的可行性进行了探讨,并指出了目前离心通风机气动噪声数值研究所面临的主要问题。可为离心通风机气动噪声产生机理和数值预测的研究提供参考。
基于CFD的离心通风机蜗壳型线结构性能分析
选取某一大比转速离心通风机为研究对象,分别以等边基元法、不等边基元法和阿基米德螺旋线方程法绘出蜗壳外型线。在三维建模软件CATIA中完成风机实体造型,用Fluent进行三维数值模拟,得到详细的风机内部流场。对比以上3种不同的蜗壳绘制方法对通风机流动性能的影响,对计算结果进行了分析并得出了结论。
防涡圈对离心风机性能影响的探讨
针对某离心通风机模型,研究了防涡圈对风机性能的影响。数值模拟和试验结果都说明了加装防涡圈后全压升和效率有所下降,这与以往的认知不完全一致。设计工况下,未加装防涡圈的通风机全压升比加装长防涡圈的风机高出约4%,效率高出约3%,内泄漏情况也会随防涡圈长度的增加变得严重;从内部流场可以看出,加装防涡圈减小了蜗壳内部的扩压空间,叶轮出口大尺度漩涡更加剧烈,影响了叶轮出口气流方向,并在叶轮出口产生回流现象,降低了通风机的全压和效率。因此认为对于不同压力系数和流量系数的风机,防涡圈对风机性能的影响规律是不一样的。
出口弯管对前向离心通风机性能影响的研究
以9 -26No4A 型前向离心通风机为研究对象,试验和数值模拟研究了出口90°弯管在不同连接方式下风机性 能的差异.结果表明,风机出口连接正转弯头或反转弯头后,均会造成风机性能的明显下降.随着流量的增大,下降趋 势变大.在风机出口与弯头之间连接长度〈3.5 倍当量直径的直管段时,风机性能改善微弱.正转弯头与反转弯头对 风机性能的影响差别较小.
离心风机蜗壳出口结构优化研究
为提高空气净化器中离心风机的风量,提出了一种基于Kriging近似模型和遗传算法的优化方法,采用正交试验的设计方法对蜗壳的出口扩张角θ、蜗舌半径r、蜗舌间隙t进行25组方案设计,并采用ANSYSFLUENT对25组蜗壳方案进行定常数值模拟,选取风机系统的风量作为优化设计目标,建立了风量与蜗壳的3个参数之间的Kriging近似模型,并用遗传算法对近似模型进行寻优,得到最优的蜗壳参数。通过对优化后的蜗壳进行仿真实验,风量提高了19.683%,同时对比优化前后的风机内部速度、总压等参数的分布,优化后的蜗壳内部速度分布更加合理,在蜗舌处的流动损失较小。提出的蜗壳优化方法对提高离心通风机性能提供了有效参考。
小流量工况下离心风机蜗壳内部的三维流动测量分析
利用五孔探针对小流量工况下离心通风机大宽度矩形截面蜗壳内部的三维流动进行了详细的测量,给出了蜗壳螺旋通道部分的3~8个横截面内比较清晰的时均速度、静压和总压的分布图形.结果表明,在小流量工况下,蜗壳内部的二次旋涡在蜗舌处就开始形成,在一个横截面内,由开始有1个涡发展成2个、甚至3个涡;速度沿径向的分布与动量矩守恒规律有比较明显的差别,特别是蜗舌附近区域的速度和压力分布与通常的分析有很大不同;蜗壳内的损失可初步归纳为4种:二次流损失、内泄漏损失、冲击损失和磨擦损失;在小流量工况下,二次流损失和内泄漏损失相对最为严重.