碧波液压网 欢迎你,游客。 登录 注册

AdaBoost算法组合的GABP诊断模型在轴承故障中的运用

作者: 胡超 沈宝国 杨妍 谢中敏 来源:机床与液压 日期: 2021-03-17 人气:84
考虑到轴承故障难以诊断的问题,提出AdaBoost算法组合遗传算法优化的BP神经网络(GABP-AdaBoost)的诊断模型。利用遗传算法寻优能力对BP网络的权值与阈值进行优化,并用AdaBoost算法进行组合;采用UCI标准数据集对GABP-AdaBoost算法中的关键参数进行分析,并设置最优参数;用最小二乘法和指数平滑法消除轴承振动信号中的漂移和微弱噪声,并用因子分析法选择最优时域参数;使用GABP-AdaBoost算法对轴承故障样本进行诊断,并将GABP、BP、BP-AdaBoost作为对比算法。重复试验30次的结果表明:GABP-AdaBoost算法诊断效果达到90%以上但诊断时间较长;BP-AdaBoost算法诊断效果优于GABP且耗时较少;GABP-AdaBoost算法与BP-AdaBoost算法对重复诊断的波动敏感程度较低。

基于能量熵和CL-LSTM的故障诊断模型

作者: 侯鑫烨 董增寿 刘鑫 段敏霞 来源:机床与液压 日期: 2021-03-17 人气:86
针对长短时记忆网络(Long Short Term Memory,LSTM)处理大数据集时运行时间长、存在维数灾难的问题,提出基于能量熵和CL-LSTM(Long Short Term Memory Network with Center Loss)的智能故障诊断模型。利用自适应白噪声的完整集合经验模态分解对原始信号进行分解;结合相关系数筛选IMF分量并计算其能量熵作为新样本输入到LSTM中,增强了样本间的差异性,减小了数据维度。将中心损失引入Softmax损失中,使类内距离更小,进一步提高分类精度。利用西储大学轴承数据集进行实验,验证了所提方法在识别滚动轴承故障状态时准确率高、稳定性好。

基于PCA-CNN的滚动轴承故障诊断方法研究

作者: 游达章 陈林波 张业鹏 康亚伟 张扬 来源:机床与液压 日期: 2021-03-17 人气:86
滚动轴承工作环境恶劣、复杂,在采集信号的过程中,不可避免地会有噪声夹杂其中。为实现快速特征提取的同时提高识别率,提出一种基于主成分分析(PCA)降噪的卷积神经网络(CNN)故障诊断方法。该方法引入PCA对信号进行降噪预处理,再将处理后的信号转换成二维特征图像,输入CNN模型以提取转换后的图像特征,进行故障模式识别与分类。利用凯斯西储大学滚动轴承数据集进行故障诊断试验,结果表明:所提方法具有可行性与有效性,且满足鲁棒性和实时性的应用要求。

基于多特征融合与GA-BP模型的滚动轴承故障识别

作者: 黄文超 王林军 刘晋玮 陈保家 来源:机床与液压 日期: 2021-03-15 人气:182
针对滚动轴承故障识别问题,基于遗传算法(GA)和BP神经网络等技术,提出一种GA-BP神经网络模型。该模型以训练数据的输出误差作为目标函数,利用遗传算法对BP神经网络的初始权值和阈值进行优化选择。将经验模态分解能量比和时域特征相结合的特征向量作为BP神经网络的输入,对滚动轴承不同工况下的故障进行识别。滚动轴承故障诊断的实例表明:该模型较传统BP神经网络模型具有更好的收敛精度、收敛速度和识别率。

基于振动时域特征的船用滚动轴承故障诊断方法

作者: 陈阳 李一 姬正一 张胜光 雷博 来源:机床与液压 日期: 2021-03-15 人气:183
基于机器学习故障诊断方法,针对船用滚动轴承复合故障特征提取多样化的特点,提出一种以振动信号时域指标为特征的随机森林故障诊断方法。将振动时域信号进行清洗转换,构造5个量纲一化指标的衍生特征,并选取以决策树为基本分类器的随机森林算法建立训练模型;通过特征筛选、评估测试和模型优化得到较为理想的故障诊断分类模型;采用滚动轴承竞赛数据集进行模型仿真,并结合实际模拟8种船用滚动轴承故障状态。通过三向振动实验和算法建模,证明特征提取的科学性和故障诊断模型的有效性。结果表明:采用该方法,数据仿真诊断准确率为98.61%,实验诊断准确率为98.85%,且该方法在振动采集方向为轴向时诊断效果最优。

基于AR能量比-FCM的滚动轴承退化状态定量评估

作者: 周建民 尹文豪 游涛 王发令 刘依 陈超 来源:机床与液压 日期: 2021-03-12 人气:72
在长期的使用过程中,滚动轴承的使用性能会发生不同程度的退化,如果能对工作中滚动轴承的退化程度定量评估,则可以避免事故的发生。使用自回归模型对滚动轴承全寿命周期的振动信号进行滤波,计算滤波后剩余分量能量与滤波后信号能量的比值,即AR能量比,以此作为特征向量。采用min-max标准化方法处理得到的特征向量,输入到建立好的模糊C均值(FCM)模型中,得到性能退化指标DI值,并描绘出性能退化曲线。对信号进行包络谱分析,验证评估结果的正确性。

OEEMD与Teager能量算子结合的轴承故障诊断

作者: 王凤利 邢辉 段树林 邱赤东 宋玉超 李宏坤 来源:振动.测试与诊断 日期: 2021-01-07 人气:125
OEEMD与Teager能量算子结合的轴承故障诊断
针对滚动轴承发生局部故障时振动信号中微弱周期性冲击的特征提取问题,提出参数优化集合经验模式分解(optimal ensemble empirical mode decomposition,简称OEEMD)与Teager能量算子解调结合的滚动轴承故障诊断方法。首先,针对集合经验模式分解(ensemble empirical mode decomposition,简称EEMD)过程中两个关键参数k(加入白噪声的幅值系数)和m(集合平均次数)的准确选取问题,通过引入相关系数、相关均方根误差和信噪比分析,给出一种可自适应确定这两个参数取值的OEEMD方法,通过OEEMD将冲击从滚动轴承振动信号中分离出来;其次,采用Teager能量算子对其进行包络解调,计算出瞬时幅值后再对瞬时幅值进行包络谱分析,以获取冲击的特征频率,从而对滚动轴承故障进行准确诊断。仿真信号分析和应用实例验证了该方法的有效性。

MED和分层模糊熵在滚动轴承故障诊断中的应用

作者: 刘艳芳 刘尚旺 来源:机械设计与制造 日期: 2021-01-07 人气:114
MED和分层模糊熵在滚动轴承故障诊断中的应用
针对单一的小波包能量特征难以实现滚动轴承故障准确诊断的局限性,提出了一种新的基于最小熵解卷积(Minimum Entropy Deconvolution,MED)、小波包能量谱和分层模糊熵的滚动轴承故障诊断方法。采用MED算法抑制噪声,突出故障冲击特征;分别提取小波包分解后不同频段能量谱和分层模糊熵融合作为特征向量,通过支持向量机完成了对于滚动轴承的故障分类。将提出的方法应用于滚动轴承实验数据进行分析,通过对比结果验证了所提方法有更高的分类准确性和更大的实用性。

LTSA和KECA相结合的轴承故障诊断

作者: 高胜利 党伟明 齐咏生 赵小荣 来源:机械设计与制造 日期: 2021-01-07 人气:202
LTSA和KECA相结合的轴承故障诊断
针对轴承的工况复杂,其振动信号呈现非线性、非平稳特性。传统算法不能充分挖掘出非线性、非平稳信号内部本质信息,提出了基于局部切空间排列算法(LTSA)与核熵成份分析(KECA)相结合的故障诊断方法。该方法首先将滚动轴承振动信号一维时间序列重构到高维相空间,并估计数据的本征维数;然后利用局部切空间排列算法对数据集进行维数约简,得到初始的低维流形结构特征向量空间的第一行特征,对其进行快速傅里叶变换(FFT),从其频谱中分别提取滚动轴承内环、外环的故障特征频率及它们分别对应的倍频和频谱能量等7个变量作为故障特征向量;最后采用KECA对滚动轴承的故障特征向量进行模式识别,KECA可实现根据熵值大小进行特征分类,具有较强的非线性处理能力,从而实现故障的识别与诊断。采用Case Western Reserve大学提供的轴承实...

40Cr15Mo2VNA钢轴承套圈锻造工艺改进

作者: 冯小川 吴玉成 范红伟 艾青牧 高春月 来源:轴承 日期: 2021-01-06 人气:169
40Cr15Mo2VNA钢轴承套圈锻造工艺改进
针对航空发动机高温、重载、防潮湿、防盐雾、防霉菌的特殊工况需求,对某型轴承设计采用国产高氮不锈钢40Cr15Mo2VNA材料。分析原材料各项指标,针对套圈原锻造工艺出现锻件表面开裂的问题,对锻造加工工艺进行了优化改进,通过工艺参数的变化解决了锻件表面开裂问题。
  • 共36页/353条