碧波液压网 欢迎你,游客。 登录 注册

基于PCA-CNN的滚动轴承故障诊断方法研究

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
1.22 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数

简介

滚动轴承工作环境恶劣、复杂,在采集信号的过程中,不可避免地会有噪声夹杂其中。为实现快速特征提取的同时提高识别率,提出一种基于主成分分析(PCA)降噪的卷积神经网络(CNN)故障诊断方法。该方法引入PCA对信号进行降噪预处理,再将处理后的信号转换成二维特征图像,输入CNN模型以提取转换后的图像特征,进行故障模式识别与分类。利用凯斯西储大学滚动轴承数据集进行故障诊断试验,结果表明:所提方法具有可行性与有效性,且满足鲁棒性和实时性的应用要求。
标签:
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论