基于一维卷积迁移学习的跨工况机床轴承故障诊断
滚动轴承作为机床的重要核心零件,对保证机床的正常运转至关重要。然而在实际工作中,机床的工况经常根据不同的工作要求产生相应的变化,对机床轴承的转速以及负载产生一定的影响,从而导致轴承的机械振动信号呈现出非平稳性、非线性和非周期性等特点。目前基于深度学习的轴承故障诊断方法对数据具有一定的依赖性,要求训练(源域)和测试(目标域)数据集具有相同的数据特征且存在足够多的带有故障信息的标签数据。然而,由于机床常在非平稳工况下运行,因此在某一工况上建立的训练模型无法直接用于其他工况。为了解决这一问题,基于迁移学习(TL)技术,设计一维卷积神经网络(1-DCNN)与迁移学习相结合的模型。该模型利用一维卷积网络直接从原始振动信号中提取故障特征信息,并利用对抗策略迁移技术提取两域的公共特征。利用域分布差异度量拉...
深度学习在表面质量检测方面的应用
基于深度神经网络(Deep Neural Network,DNN)的深度学习(Deep Learning,DL)在图像识别、语音识别和文本分析等领域取得了巨大成功。但是深度学习在工业领域的应用遇到训练样本数量不够和训练算力不足的困难。将深度神经网络的迁移学习(Transfer Learning)应用到工业产品表面质量检测,解决了深度学习样本和算力不足的问题,其准确率达到了99.8%,超过了传统机器学习算法和没有迁移学习的卷积神经网络(Convolutional Neural Network,CNN)。构造的深度神经网络分为两部分前面为已经训练好的深度神经网络GoogLeNet,后面部分为识别表面缺陷专用层,训练的时候只需要训练后面部分。
选择性集成迁移算法在轴承故障诊断领域的应用
针对工况复杂多变而产生数据分布不一致,导致传统机器学习进行故障诊断分析时精度低的问题,提出了选择性集成迁移学习的故障诊断方法,基于相似度原理,将相似度高的源域数据迁移至目标域,增加了有效训练样本的数据量,然后结合集成SVM进行故障识别;并在此基础上,提出了一种基于类内类间数据样本分散度的特征选取方法。轴承故障诊断实验结果表明,选择性集成迁移学习可以有效解决工况多变导致设备故障诊断精度低的问题,而且特征优选后诊断精度会得到进一步提升。
基于深度迁移学习的齿轮故障诊断方法
针对齿轮故障样本欠缺问题,提出一种基于Hilbert-Huang谱和预训练VGG16模型的迁移学习故障诊断方法。对振动信号进行经验模态分解(Empirical Mode Decomposition,EMD)得到本征模态函数(Intrinsic Mode Function,IMF),同时取相关系数最大的IMF做Hilbert变换,获取时频谱;利用预训练VGG16提取变负载下和各健康状态下齿轮的Hilbert-Huang谱图像特征;采用全局均值池化层取代VGG16模型部分全连接层,进行分类输出。实验结果表明,在少量的样本数据下,该方法的齿轮故障诊断准确率达到98.86%,优于TLCNN和Tran VGG-19等迁移学习方法,证明了该方法在齿轮故障诊断中具有一定研究价值。
基于数据生成与迁移学习的轴承小样本故障诊断
针对风电机轴承历史运行数据来源单一、数据量少,导致风电机轴承故障诊断性能受限问题,提出一种基于数据生成与迁移学习的轴承小样本故障诊断方法。首先,对于轴承数据集中存在类不平衡、数据稀缺的问题,提出一种基于门限机制的数据生成方法,采用与轴承驱动端同轴的桨叶端数据为模板产生足量的生成数据,结合真实数据作为源数据集;然后,根据数据的时序关联性和小样本的应用场景,提出一种基于一维卷积神经网络(One Dimensional Convolutional Neural Network,1DCNN)和双向门限单元(Bidirectional Gated Recurrent Unit,BiGRU)的迁移学习(Transfer Learning)方法,先用源数据集在训练网络上训练获得源模型,再用少量驱动端数据作为目标数据集对其进行微调(Fine-tuning)获得目标模型;最后,对目标模型全连接层的输出采用Softmax函数进行故障诊断。实验表明,提出的故障检测方法在...
基于特征迁移学习的变工况下轴向柱塞泵故障诊断
不同工况下的轴向柱塞泵故障数据存在分布差异,现有的基于特征迁移学习的变工况故障诊断方法大多只通过单个传感器信号进行分析,具有一定的局限性和片面性。为了利用多传感器信号提高变工况下轴向柱塞泵故障诊断的性能,该研究提出一种耦合分类器子空间嵌入分布自适应(Subspace Embedded Distribution Adaptation with Coupled Classifiers,SEDACC)方法。该方法利用多传感器信号的频谱数据构造主要数据集和辅助数据集,通过子空间对齐(Subspace Alignment,SA)方法将源域和目标域的主要数据投影到公共子空间中,并采用加权条件最大均值差异(Weighted Conditional Maximum Mean Discrepancy,WCMMD)作为度量进行特征分布的适配。同时,基于结构风险最小化(Structural Risk Minimization,SRM)准则在源域标签数据上学习主分类器,根据主分类器对于目标域的预测结果在目标域辅助数据上学习辅助分类器...
基于深度代理模型的叉车臂架液压系统设计优化
为了提升利用微调构造的深度神经网络代理模型(又名深度代理模型)的性能,提出了一种主动闭环蒙特卡罗试验设计方法,通过费雪尔信息矩阵将设计点与模型梯度关联,并利用乘法算法求解,然后引入随机离散蒙特卡罗算法进行闭环采样,使得设计点具有覆盖整个设计空间的统计学特性。基于该方法,利用多层感知器建立了某伸缩臂叉车臂架动作特性深度代理模型,并结合最小预测和预期改善,实现了液压控制系统的设计优化。实验结果显示:与当前基准相比,提出的方法所需仿真数据减少了64.3%;优化后叉车臂架变幅缸压力波动更加平稳,且最大值减小了46%。
基于伪标签的弱监督迁移学习模型
针对目标域标记数据少导致迁移模型泛化能力差的问题,提出基于伪标签的半监督迁移学习模型WSTLPL。卷积神经网络用于学习原始振动数据的可迁移特征,用源域数据预训练网络;利用该网络预测目标域数据类别,将分类概率最大的类标签作为数据的伪标签。根据域自适应和伪标签学习的正则化项,对神经网络的参数施加约束,以减少学习到的可迁移特征的分布差异。结果表明:与现有诊断模型相比,该迁移模型的准确率更高。
基于深度学习的石化机组轴承故障诊断综述
作为石化机组的重要组成部分,轴承发生故障将导致机械运转故障进而影响企业经济效益,故而研究石化机组轴承故障预测、故障诊断具有重大意义。介绍故障诊断中早期基于信号处理的轴承故障诊断方法,阐述应用广泛的深度学习(包括卷积神经网络、迁移学习)等模型在石化机组轴承故障诊断中的应用,并展望基于人工智能的石化机组轴承故障诊断应用。
基于深度学习和迁移学习的液压泵健康评估方法
对液压泵建立健康评估模型需要大量训练数据,然而由于其工作条件随时间和地点的变化,使得获取特定条件下的数据比较困难。为了在目标数据不足的条件下对液压泵建立健康评估模型,提出了一种深度学习和迁移学习的液压泵健康评估方法。首先,通过卷积神经网络的方法对已有大量历史条件下液压泵振动的频域信号建立预测模型,再用迁移学习的思想在少量目标液压泵数据上对深度学习模型进行微调。实验结果表明,该方法可以有效地提高预测准确率。