碧波液压网 欢迎你,游客。 登录 注册

区分快慢变子系统的柔性机械臂控制方法

作者: 孙绍林 来源:机械设计与制造 日期: 2024-09-05 人气:171
区分快慢变子系统的柔性机械臂控制方法
为了提高柔性机械臂控制精度、抑制柔性机械臂末端振动,提出了区分快慢变子系统的组合控制方法。使用拉格朗日方程和假设模态法建立了柔性机械臂动力学方程,利用奇异摄动原理将柔性机械臂系统分解为快变子系统和慢变子系统;鉴于慢变子系统的强非线性和参数不确定性,将反演控制和滑膜变结构相结合,提出了基于反演滑模变结构控制方法的慢变子系统控制;鉴于快变子系统模型不准确问题,而模糊控制对模型精度没有要求,因此设计了快变子系统模糊控制器。经仿真验证可以看出,与传统PID控制相比,机械臂转角最大误差由4.1°下降为0.04°,稳定时间由10s下降为2.5s,末端振动最大值由0.081m下降为0.021m,极大地提高了柔性机械臂控制精度。

空间充气支撑管的轴压屈曲分析

作者: 周涛 谢志民 杜星文 来源:齐齐哈尔大学学报(自然科学版) 日期: 2024-01-05 人气:8
空间充气支撑管的轴压屈曲分析
将用于空间的Kapton—AI—Kapton充气展开支撑管视为圆柱薄壳,将其初始折痕、褶皱作为初始几何缺陷,采用奇异摄动法研究初始几何缺陷对屈曲荷载和后屈曲平衡路径的影响。结果表明,初始几何缺陷降低了充气支撑管的屈曲载荷,但不同的几何参数与屈曲模态下,充气支撑管对缺陷的敏感度是不同的。

充气压力对各向同性充气管轴压稳定性的研究

作者: 周涛 谢志民 杜星文 来源:齐齐哈尔大学学报(自然科学版) 日期: 2024-01-03 人气:4
充气压力对各向同性充气管轴压稳定性的研究
采用奇异摄动法研究各向同性充气支撑管的充气压力与轴压屈曲荷载之间的关系,及其对屈曲荷载和后屈曲平衡路径的影响。结果表明,充气压力可以弥补材料的几何缺陷,明显提高充气管的屈曲载荷。该结论为充气结构在空间的应用提供依据。

受压缺陷矩形板振动分析

作者: 孙海虹 张圣坤 来源:振动与冲击 日期: 2023-12-28 人气:5
受压缺陷矩形板振动分析
采用简易高效的方法分析受压缺陷矩形板的振动问题。首先应用奇异摄动理论计算受压缺陷板的后屈曲,然后给出后屈曲平衡路径上的微振动方程,计算振动频率,提出了受压缺陷板振动频率和轴压、残余应力与残余变形关系的一个显式表达式。探讨了焊接残余变形、残余应力对矩形板振动频率的影响。最后给出了计算实例,并与试验结果进行了比较。

振动基柔顺驱动打磨机器人的力/位混合控制研究

作者: 尤子成 王志刚 郭宇飞 来源:机床与液压 日期: 2021-02-27 人气:188
振动基柔顺驱动打磨机器人的力/位混合控制研究
针对柔顺打磨机器人在移动作业过程中,在基础振动、柔性振动与环境接触力耦合作用下非线性控制问题,提出一种新型鲁棒轨迹跟踪力/位混合控制策略。使用第二类拉格朗日法建立柔顺机械臂的动力学方程,通过奇异摄动法将上述系统分为快、慢2个时间尺度的子系统。慢变子系统对系统刚性部分采用力/位混合控制方法,其中力控制采用PID控制,位置控制采用基于神经网络的鲁棒控制。快变子系统对系统柔性部分采用速度差反馈法进行控制。结果表明:利用所

传动柔性提升机神经网络鲁棒控制及振动抑制

作者: 王志刚 朱畅 郭宇飞 来源:武汉科技大学学报(自然科学版) 日期: 2020-12-06 人气:86
传动柔性提升机神经网络鲁棒控制及振动抑制
为了提高物料提升机的位置控制精度和抗冲击能力,设计一种神经网络鲁棒控制和振动抑制方法。将传动链、谐波驱动装置等传动部件的关节柔性简化为无惯量线性扭(弹)簧并引入物料提升机模型中,利用拉格朗日方法建立系统刚-柔耦合动力学方程。基于奇异摄动理论将系统降阶分解为快、慢两个子系统,并设计混合控制器,其中,表征柔性振动的快变子系统采用关节速度差值反馈来直接抑制振动,而表征刚性运动的慢变子系统则采用基于HJI理论和RBF神经网络的鲁棒控制,通过神经网络对系统参数误差进行自适应调整。仿真结果表明,所设计的控制器能克服系统参数误差及外界扰动的影响,实现物料提升机位置的精确控制,并能有效抑制柔性关节的振动,保持系统的稳定性。

液压柔性机械臂奇异摄动法控制

作者: 曾克俭 李光 来源:中国机械工程 日期: 2019-08-10 人气:212
液压柔性机械臂奇异摄动法控制
将液压柔性机械臂系统分为相互耦合的两个部分,即柔性机械臂和液压伺服驱动系统,并通过一个驱动Jacobian矩阵构建其耦合关系。将作用于机械臂上的力视为一虚拟输入,运用奇异摄动法将柔性机械臂的模型分解为快慢两个子系统,其中慢变子系统控制器完成对期望轨迹的跟踪,而快变子系统控制器抑制柔性臂的振动。在此基础上,采用反演控制设计方法,得到液压伺服阀的位移控制律,使液压油缸的实际输出力完全满足柔性臂所需要的驱动力。数字仿真的结果验证了设计控制器的正确性和有效性。
    共1页/7条