装载机液压系统载荷谱编制方法研究
轮式装载机应用广泛,市场保有量巨大,且装载机作业工况复杂,作业环境恶劣,故装载机关键零部件的可靠性及使用寿命的提供有着重要意义。本文通过采集轮式装载机在真实工况下五名操作司机的液压系统载荷数据,通过建立POT模型,得出测试载荷极值和进行载荷外推。通过雨流计数法得出部件雨流计数矩阵图,进行载荷频次的外推,最终绘制装载机液压系统载荷谱。
基于载荷谱的三峡升船机齿条疲劳寿命评估
针对三峡升船机齿轮齿条在全寿命周期内可能面临疲劳失效的问题,基于驱动电动机以及同步轴转矩计算出的齿轮齿条载荷,构建了包含受力齿面、载荷循环次数的齿条载荷谱;结合齿条的S-N曲线、Miner线性累积损伤准则,计算了齿条在设计寿命35年内的损伤度及剩余疲劳寿命。此外,采用累积迭代法计算了齿条的接触、弯曲安全系数,实现了齿条实际载荷与设计载荷下安全系数的相互对比与运行安全性能验证。研究表明,齿条上齿面的啮合次数较多,其概率为73.03%;在设计寿命内,齿条上齿面的接触疲劳总损伤度为1.65×10-12,按载荷谱的总循环次数为1.87×1017;齿条上齿面的弯曲疲劳总损伤度为8.15×10-14,按载荷谱的总循环次数为3.78×1018,齿条在设计寿命35年后具有很长的剩余疲劳寿命;齿条的接触安全系数SH=2.958,弯曲安全系数SF=8.106,均大于所选取的较高可靠度下的最...
基于载荷谱工况的轮边减速器刚柔耦合动力学与疲劳寿命评估
针对装载机驱动桥轮边减速器齿轮系统的疲劳问题,开展了其动力学仿真与疲劳寿命评估。首先,基于刚体动力学与刚柔耦合动力学,分析了太阳轮与行星轮接触力的变化情况,并与接触力理论计算值对比,验证了模型的可信性;而后,将太阳轮考虑为柔性体,提取了齿根疲劳危险点的应力时间历程,对应力时间历程进行了峰谷抽取与小波去除,结合Goodman公式修正了平均应力的影响,编制了一维应力谱;最后,依据线性疲劳损伤累积准则对太阳轮齿根的裂纹萌生寿命进行了计算评估,并与实验结果进行了对比。结果表明,基于刚柔耦合动力学模型的太阳轮的裂纹萌生寿命为42709 h,与两次实验结果的相对误差分别为1.5%与3.7%,验证了评估方法的合理性,为齿轮系统的优化与抗疲劳设计提供了参考。
基于实际载荷谱的电动汽车减速器齿轮疲劳寿命分析
针对电动汽车减速器齿轮疲劳寿命研究存在加载信号简单、难以反映实际行驶中的真实受载问题,提出了一种以实际行驶载荷谱为输入的电动汽车减速器齿轮疲劳寿命分析方法。制定减速器试验场实际行驶载荷谱采集方案,组建测试系统,采集了电动汽车减速器实际行驶载荷谱;在此基础上,建立了电动汽车减速器刚-柔耦合系统动力学模型,并进行了运动学和动力学验证;以采集的实际行驶载荷谱为输入,提取齿轮啮合力,结合有限元分析模型,对减速器齿轮损伤和寿命进行了分析。结果表明,基于实际载荷谱的电动汽车减速器齿轮疲劳寿命分析更加符合真实情况。
谐波减速器双应力步降加速寿命试验方法研究
针对现有的谐波减速器加速寿命试验方法效率低、试验方案不完善的问题,提出了一种双应力步降加速寿命试验方法。以工业机器人用谐波减速器为研究对象,通过对加速方案的对比以及加速寿命失效机理的分析,制定出双应力步降试验载荷谱。基于各段步降载荷应力之间的迭代关系,利用遗传算法计算了谐波减速器所服从Weibull分布的最优参数。结果表明,此双应力步降加速寿命试验的加速因子为12.5。该方案准确并有效地提高了试验效率,为优化谐波减速器设计以及缩短谐波减速器加速寿命试验的试验周期提供了参考依据。
气动环境下结构噪声载荷谱编制方法
目前针对既受气动静压力又受声载荷的结构,试验考核时大部分是静强度与声疲劳寿命分开考核,但是气动静压产生的拉伸平均应力会影响结构的声疲劳寿命,本研究提供一种气动环境下结构噪声载荷谱编制方法,将气动静压对结构寿命的影响等效到声载荷中,便于在实验室中进行疲劳寿命验证。通过有限元研究了气动静压对结构振动特性和响应特性的影响,计算得到了不同压力情况下结构的振动特性,并且得到了气动静压与声载荷联合作用下结构的响应,根据相应材料的随机S-N曲线计算得到不同静压下结构的声疲劳寿命,得出了气动静压达到一定值会严重影响结构声疲劳寿命的结论。随后利用修正Goodman公式将平均应力非零状态的动应力转化为零平均应力时的动应力,然后根据损伤等效关系将气动静压对结构寿命的影响等效到声载荷中。研究给出了气动环境下...
基于ANSYS/FE-SAFE的快速地铁车辆一系钢圆弹簧疲劳寿命分析
以某快速地铁车辆的一系钢圆弹簧为研究对象,开展疲劳寿命预测分析。通过有限元软件ANSYS建立一系钢圆弹簧模型,分析它在最大工作载荷下的应力分布;通过动力学分析软件SIMPACK建立快速地铁车辆模型,得出弹簧在纵向、横向和垂向振动位移时间历程;基于Miner线性疲劳损伤理论,以一系钢圆弹簧的应力和载荷谱为输入,结合疲劳寿命分析软件FE-SAFE对一系钢圆弹簧进行疲劳寿命计算。结果表明:快速地铁车辆一系钢圆弹簧第二圈内侧为应力最大部位,最大应力1294.19 MPa,疲劳寿命约为1945942次,符合某快速地铁车辆一系钢圆弹簧实际情况。
基于UG有限元模型的航空发动机高压涡轮盘蠕变寿命计算
利用UG软件建立航空发动机高压涡轮盘有限元模型,并用ANSYS软件进行了网格划分。对构件各状态下的应力、温度场进行计算分析,从而确定危险部位。根据热强参数方程,计算高压涡轮盘在不同工作状态下的蠕变寿命,从而得到其蠕变寿命载荷谱。对高压涡轮盘蠕变寿命载荷谱进行提取,并以蠕变寿命消耗线性叠加原理为基础,对高压涡轮盘的蠕变寿命进行等效计算。研究结论为高压涡轮盘蠕变寿命预测提供了依据。
用Miner法则计算齿轮的损伤率
利用Miner法则计算齿轮在给定载荷谱下的损伤率,从而获得齿轮在变工况下计,算疲劳强度的方法,并举例1.5MW风电齿轮的损伤率计算。
2.5MW风电齿轮箱轴承疲劳寿命研究
以2.5MW风电齿轮箱高速轴轴承为研究对象,对变载荷条件下的轴承疲劳寿命进行了预测。首先对风场实测的齿轮箱输入端离散载荷谱做进一步统计分析处理,得到了更精确的连续载荷谱;其次运用修正的Miner疲劳累积损伤理论建立了风电齿轮箱轴承的疲劳寿命计算模型;最后在对齿轮箱进行受力分析的基础上,结合蒙特卡洛抽样法对高速轴轴承疲劳寿命作了分析计算。