基于小波包方法的超声速气膜气动光学效应相干结构
当高速成像制导导弹在大气中飞行时,其光学窗口承受着严重的气动加热。超声速气膜冷却方法可以有效地隔离外部加热,但是超声速气膜流动会引起光束退化,降低图像质量。为了研究超声速气膜气动光学效应,本文构建了主流马赫数为3.4,设计喷流马赫数为2.5,实际测得喷流马赫数为2.45的超声速气膜实验装置。利用基于纳米粒子的平面激光散射技术获得了高时空分辨率流场图像,并对气膜冷却流动的密度场进行重构,利用光线追迹法获取了对应密度场的光程差。通过将光程差分布和K-H涡对比后发现,光程差的波谷位置对应于涡卷的中心,而光程差的波峰对应于涡卷中心之间的连接部分。但是,随着涡结构的发展破碎,对应关系不再成立。根据超声速气膜NPLS流场图像结果,利用分形原理获取的分形维数结果,将其沿流向划分为三个区域,其对应平坦度分别为3.4,2.9,3.6...
小尺度流场内涡旋光束的气动光学特性
构建了一个小尺度流场模型,采用二阶紧致差分对抛物型的复振幅微分方程进行求解,探究小尺度流场内的气动光学特性。应用龙格-库塔法(Runge-Kutta methods)沿光束路径做非线性积分,计算不同拓扑荷数的LG光束在不同马赫数、不同攻角、不同海拔经过小尺度流场后的光强和光程差(OPD)分布,并与高斯光束进行对比评价光束质量。仿真结果表明,在相同的流场环境下,LG光束的拓扑荷数越大,相位稳定性越好,且均优于高斯光束。在振幅稳定性上,拓扑荷数越大振幅稳定性越差,成像偏移越大,与高斯光束相比,LG光束受海拔和攻角的影响更大,当且仅当径向指数为0,拓扑荷数为1时LG光束优于高斯光束。这些特性对气动环境下自由空间光通信技术应用提供了理论参考。
不同流速比超声速混合层气动光学效应研究
针对不同流速比混合层流场气动光学效应问题,首先采用大涡模拟数值方法进行了数值仿真,其次用光线追迹方法进行了气动光学效应仿真,最后对混合层的气动光学效应进行了评价。结果表明,混合层流场涡结构与光程差极小值存在一一对应关系,并且其流速比低的混合层气动光学效应更加严重。同时,研究了不同光学参数对斯特列尔比的影响,得到了相应的规律。
典型光学窗口流场的气动光学效应数值模拟
采用延迟脱体涡模拟方法计算共形光学窗口转塔和平面光学窗口转塔的绕流流场,并根据绕流流场定量分析在转角0°、90°和180°下两种光学窗口的气动光学效应和远场衍射结果。采用Zernike多项式拟合波前,并结合自适应光学分析两种光学窗口所发射光线的传输性能。结果表明在无自适应光学矫正下,平面光学窗口在0°和180°转角下的光线传输性能优于共形光学窗口,90°则相反;在自适应光学矫正平移、倾斜、离焦和像散等低阶项时,共形光学窗口在90°和180°转角下其光线传输性能都优于平面光学窗口;而在0°转角下,两种光学窗口的光线传输性能相近。随着转角的增大,两种光学窗口气动光学效应中的高阶项不断减小。值得注意的是,近场畸变的光线在远场衍射后的光强峰值可能会大于未畸变光线远场衍射的光强,且其光强峰值位置会严重偏移。
高速流场下凸台周围的气动光学效应
针对高速流场下凸台周围的气动光学效应,对不同马赫数下的三种凸台形状周围的流场进行仿真计算,计算得到流场的密度变化,计算了光线经流场传输后的光程差。仿真结果表明随马赫数增大,光程差逐步增大;同等条件下,不同出射角度对应的光程差不同,凸台存在强烈的尾流区域,从而导致较大的光程差;在马赫数达到跨音速时,凸台顶端也会产生较大的光程差;曲率较小的凸台结构对周围流场的影响较小。
适用高超声速飞行环境的超声速气膜冷却光学窗口研究进展
高超声速条件下,气动光学效应的存在严重影响红外成像制导精度,已经成为新一代高超声速精确打击武器研制面临的关键技术难题之一。为解决这一技术瓶颈,需要开展适用高超声速飞行环境的超声速气膜冷却光学窗口研究,解决高超声速飞行条件下光学窗口防热和成像难题,突破现有红外成像制导武器的速度和温度限制,可为实现高超声速条件下武器对空、对地和对海高精度打击提供支撑。
气动光学效应对激光扩束系统的影响
激光系统往往需要应对复杂的环境气流,同时由于激光扩束系统口径增大,其晶体窗口难以实现,环境气流更容易进入系统内部,从而影响光束质量。针对环境气流对激光扩束系统带来的气动光学效应问题,借助流体力学软件FLUENT对系统内部流场进行CFD求解,得到不同风力等级和进风角度下流场的各种参数分布,再通过Gladstone-Dale关系将流场密度场映射为折射率场,运用变折射率流场的光线追迹法,得到光束在该非均匀流场中的传输路径;最后结合数值分析方法,计算得到湍流场所带来的光学像差。结果表明,环境气流会给主次镜和反射镜周围引入较多涡流,因此不能忽略其光学效应,从而提出了一种增加扩束系统镜筒长度的方法来降低这一影响。镜筒加长0.5 m之后,扩束系统内部的涡流团可以避开光束传输的主要路径,其出口处波像差的RMS值从最初的0. 317μm下降到0.078μm...
一种高超星图高精度半盲复原算法
针对高超声速飞行器在平流层内应用天文导航时受气动光学效应及运动模糊影响后难以观星和高精度导航的问题,提出一种基于正则化思想的高超星图半盲复原算法。该算法首先针对高超星图的特点进行去噪与星点初提取等预处理操作,接着从图像中提出可用的模糊核信息,并通过融合达到去噪的目的。然后结合天文图像灰度及梯度的稀疏先验分布特性,提出一种针对高超星图的正则化非盲复原模型,利用分裂布雷格曼迭代法等算法迭代估计清晰图像。将本算法与传统星图复原算法、其他最新正则化复原算法进行星图复原与导航效果比较,结果表明本算法复原效果最佳,且能明显改善星点识别正确率及质心坐标计算精度,可用于大幅提高超声速飞行器在平流层中的天文导航适应性及导航精度。
带超声速气膜高超声速光学头罩气动光学效应抑制实验
高超声速(Ma_∞=6.0)炮风洞中带超声速(Ma_c=3.0)喷流光学头罩受到周围绕流影响出现气动光学畸变.利用基于背景纹影(background oriented schlieren, BOS)的波前测试方法测量了光学波前畸变.研究结果表明:瞄视误差(bore sight error, BSE)与喷流压比(pressure ratio of jet, PRJ)之间近似呈正相关.在有喷流的情况下,压力匹配时瞄视误差相对比较小,并且喷流压比对气动光学高阶畸变的影响不显著.微型涡流发生器(micro vortex generator, MVG)对瞄视误差影响不明显,但是对气动光学高阶畸变的影响较为显著.基于波前互相关结果,施加微型涡流发生器之后,波前结构尺寸从0.2A_D减小为0.1A_D.结构尺寸的减小较为有效地抑制了气动光学高阶畸变并且提高了波前的稳定性.
液压放大式基准测力机液压伺服自动控制系统
针对目前液压放大式基准测力机电液伺服压力控制系统存在的压力镇定时间长、工作液压缸活塞位置存在静差以及压力过冲等问题,提出了对电液控制系统进行压力-位置分段控制的方法.试验表明,该方法能有效解决上述问题.在确保液压缸平衡的同时,将压力精度控制在万分之一以内.