干气密封补偿环O形圈的变形与应力分布规律
采用有限元分析软件ANSYS建立干气密封补偿环O形橡胶密封圈二维轴对称模型,对其在不同压缩率与介质压力下的变形、VOn Mises应力及密封面处接触压力、接触摩擦应力分布规律进行探讨,确定O性橡胶密封圈易失效位置;分析压缩率和介质压力对其最大VOn Mises应力、最大接触压力、最大接触摩擦应力的影响.分析结果表明O形圈密封最大VOn Mises应力、密封面最大接触压力、最大接触摩擦应力随介质压力的增大而增大,在中低压下提高O形圈的压缩率既能提高密封圈的密封性能,也不影响补偿环的追随性.为干气密封补偿环上的O形密封圈结构设计及选型提供参考.
柱面螺旋槽干气密封流动场数值计算与试验验证
针对柱面螺旋槽干气密封中的单列螺旋槽结构特点,建立螺旋槽浮环气膜密封的数学分析模型。基于中心差分法和Newton-Raphson迭代法,进行压力控制雷诺方程和气膜厚度方程的求解,得到压力和气膜厚度分布及不同操作参数下柱面单列螺旋槽气膜的泄漏量,并分析工况参数对柱面螺旋槽稳态性能的影响。结果表明泄漏量是随着偏心率和压力的增加而升高;当偏心率一定时,转速的增加,导致泄漏量下降;当转速一定时,压力的上升导致泄漏量的急剧上升,近乎线性分布。试验结果与理论分析结果相吻合,验证了理论模型和计算方法的正确性。
叶轮转子-轴承-干气密封系统模态分析及谐响应分析
以“叶轮转子-轴承-干气密封”系统的动态特性为研究对象,利用软件ANSYS建立有限元模型,对系统进行满载条件下模态分析,得到该系统各阶固有频率和振型,对该系统进行空载条件下模态分析.对比上述两种固有频率发现工况下干气密封系统及叶轮转子所受的力降低了系统固有频率.以系统不平衡量为体载荷,通过谐响应分析方法得到系统的稳态不平衡响应曲线.
仿树形槽干气密封稳态性能分析
针对经典螺旋槽干气密封在反向旋转时动压效果较差,易遭受磨损、失稳等问题,提出一种新型双向旋转式仿树形槽。首先应用SolidWorks软件建立气膜三维模型,然后应用ICEM软件进行网格划分,最后在Fluent软件里对流场进行仿真模拟,将不同膜厚、槽深、转速等参数下开启力、泄漏率的计算结果与螺旋槽进行对比。结果表明:仿树形槽相较螺旋槽可产生明显的动压效应,且开启力较大,但其泄漏率较高,其中仿树形槽膜厚取2μm,槽深取5~7μm时,密封性能较好;膜厚和槽深对密封性能有较大的影响,干气密封开启力随膜厚增大而减小,随槽深的增大而增大;压力和转速增大2种槽型开启力都随之增大,但相比螺旋槽,仿树形槽密封性能受转速影响更小,且具有更好的开启效果。仿树形槽在实现双向旋转的同时也具有较好的密封性能,为双向旋转式干气密封槽型的设计提供一定的...
柔性端面气膜密封流场分析及密封特性研究
提出一种航空发动机主轴承端适用密封——柔性端面气膜密封。通过对三种密封端面变形情况下的压力控制方程进行求解,获得密封气膜微尺度流场特性的演变规律,并探讨关键密封性能参数与工况条件的相关性。研究结果表明:柔性端面在带压气膜的作用下发生变形,其中波箔片的变形起主导作用,平箔片的影响可忽略不计;相较于刚性端面,柔性端面可有效增大气膜开启力,同时泄漏量也增大;在不同进出口压力比、转速以及初始气膜厚度下,二者部分密封特性呈现出不同的变化趋势,间隙楔形效应使柔性端面的黏性摩擦力矩和气膜刚度变化率均小于刚性端面的相应数值。通过研究结果推断,柔性端面结构可在高速低压工况下具有更稳定的综合密封性能。
机械密封状态监测与故障诊断技术研究进展
对机械密封状态监测和故障诊断的整体过程和方法进行系统阐述,从信号获取、降噪和重构、特征提取、模式识别以及寿命预测5个方面,综述机械密封状态监测与故障诊断技术的研究进展,并分析存在的问题;展望机械密封智能化的未来发展方向。
干气密封摩擦界面弹塑性接触刚度模型
针对干气密封摩擦界面复杂多变的弹塑性变形阶段,基于微凸体在变形全过程满足连续性、光滑性和单调性的特点,通过余弦函数来探究接触面变形量与接触特性之间的关系,建立了具有光滑连续特性的微凸体弹塑性接触模型,然后基于统计学理论,建立摩擦界面整体接触模型,最后将所建立的模型与GW模型、CEB模型、ZMC模型、KE模型和Li模型五种经典模型进行对比分析,并通过理论分析与数值求解得到干气密封摩擦界面的力学特性及影响因素。结果表明:该模型实现了微凸体在变形全阶段的连续性、光滑性和单调性;接触载荷、接触面积和接触刚度与无量纲接触变形量成正相关;与无量纲表面平均接触距离成负相关,且无量纲表面平均接触距离越小,其粗糙表面发生塑性变形的比重就越大;为使干气密封动环和静环更加可靠平稳地运行,应保证动环和静环的接触面尽...
湍流效应对干气密封性能影响的研究进展
在干气密封的理论研究与设计计算过程中,一般都是基于层流流动假设下进行的,但随着密封运行工况渐趋于高参数化、工艺介质多相化,在高参数、极端复杂工况下时流体会处于湍流流动状态,传统的层流流动理论就变得不再适用,因此在干气密封的理论设计与研究中就需要考虑润滑气体的湍流效应。总结现今应用较为广泛的3种湍流润滑模型,即Constantinescu模型、Ng-Pan-Elrod模型和Hirs模型,并介绍各模型的理论基础与适用范围。对湍流润滑方程及其在不同模型下的湍流系数表达式进行说明,综述考虑湍流效应对干气密封稳、动态性能影响的国内外研究进展。
湍流效应对空化流场及密封性能的影响
针对端面螺旋槽液膜密封空化效应及稳态密封性能,基于k-ω湍流模型及Schnerr-Sauer空化模型采用专业流场仿真软件对机械密封端面螺旋槽液膜进行流场模拟研究,对比分析层流和湍流2种流态下不同螺旋槽几何参数和操作参数对密封稳态性能以及空化区域面积的影响。研究结果表明:端面螺旋槽液膜密封在湍流状态下的开启力、泄漏率以及空化面积比均大于层流模型下的值,且随着几何参数和工况参数的变化,层流效应和湍流效应对密封开启力、泄漏率以及空化面积比的影响规律基本相似;在不同条件下,螺旋槽外径侧更容易产生空化效应,且湍流效应下的空化区域明显大于层流效应下的值。研究表明在端面螺旋槽液膜密封中,湍流效应和空化效应对密封稳态性能的影响不可忽略。
多重效应下超高速干气密封流场模拟及密封性能试验
为探究重大关键设备中超高速干气密封的气膜流场规律,考虑超高转速产生的湍流效应、惯性效应、真实气体效应、阻塞流效应对气膜流场和密封性能的影响,构建多重效应下湍流计算模型。试验验证理论模型的正确性和有效性,并探索超高速条件下不同工况参数和结构参数对密封性能的影响。研究结果表明:湍流效应下,泄漏率随转速和介质压力的增大而增大;开启力随转速的增大先略微减小后逐渐增大,而随介质压力的增大非线性提升。本实例超高速工况下(50000 r/min、11 MPa),优化结果表明螺旋角选择16°,槽深则在6~7μm范围内选择。这为设计和制造超高速干气密封提供了理论支撑。