牙轮钻头用单金属密封瞬态启动动力学模型与密封性能
牙轮钻头的频繁启动以及振动工况直接影响单金属密封的可靠性和工作寿命。基于热-流-固-动耦合场,建立了复杂工况下单金属密封瞬态启动动力学模型,采用有限差分法和Newmark法联合求解润滑方程和动力学方程,考察钻头转速和轴向激励对单金属密封动态密封性能的影响,结果表明:随着钻头不断启动至恒转速阶段,高压(p0=30 MPa)下单金属密封端面液膜沿径向始终呈发散型分布,端面温升在轴向激励下振荡增加至稳定波动,瞬时泄漏率呈正负交替波动状态,幅值远大于稳态泄漏率幅值,特别是当泄漏率为负值时,外径侧泥浆极易侵入密封间隙;单金属密封动态性能随钻头转速和轴向激励载荷增大而进一步恶化。
传热模型对近临界工况CO2干气密封温压分布和稳态性能影响
干气密封流体膜与密封环间传热模型的合理选取对于准确求解密封温压分布和稳态性能至关重要。在CO2近临界工况下,对比研究了密封环等温模型、绝热模型和共轭热传递模型对超临界CO2干气密封端面温度、压力分布和开启力、泄漏率等稳态性能的影响,探讨了不同膜厚和转速条件下密封环等温模型和绝热模型的适用性,并基于共轭热传递模型研究了超临界CO2和空气介质干气密封的温压分布和稳态性能差异。结果表明:以共轭热传递模型计算结果为基准,密封环等温模型假设适用于小膜厚低速流动工况,不过开启力偏低而泄漏率偏高,绝热模型假设适用于大膜厚高速流动工况;相较于空气介质干气密封,超临界CO2干气密封在小膜厚下的温度分布和大膜厚下的压力分布基本接近,不过小膜厚下的温度更低,而在大膜厚下的压力更高。
基于CFD的冷凝器芯体管道内流场数值模拟
为研究平行流式冷凝器芯体扁管不同分布下制冷剂的能量损失及冷凝器管道内制冷剂的流动规律,建立冷凝器芯体的二维模型,利用CFD软件,对冷凝器管道内制冷剂的流动进行数值模拟。在扁管分布为20-13-9、21-13-8、21-12-9三种结构下,对17种不同流量的制冷剂模拟结果进行分析,得到不同流量下的速度场及压力场,计算了三种结构在不同流量下的能量损失。结果表明:在相同条件下,制冷剂在20-13-9结构中的能量损失最少,则冷凝器芯体的扁管制成20-13-9的结构更加合理。还直观展现了制冷剂在冷凝器芯体管道内的流动情况,在整个芯体中,流动过程中产生了各种大小尺度不同的旋涡。可将扁管连接过渡处设计成圆角结构,以减少能量损失。研究结果揭示了制冷剂在冷凝器中的流动规律,为汽车空调冷凝器的优化设计提供一定参考。
水力旋流器径向压力分布及能耗分析
水力旋流器内径向压力分布规律可根据对应的切向速度分布规律求出,分别针对准自由涡区和强制涡区的不同特点得到静压力的计算公式。对旋流器内某一典型截面的压力分布的理论值和模拟值进行了比较,并进一步对旋流器内的能耗进行了分析,发现旋流器的内部损耗主要集中在溢流管半径以内的区域。
超短接触旋流反应器分离腔气固分离特性的数值模拟
采用欧拉模型对超短接触旋流反应器内的气固两相流场进行了数值模拟,主要研究了分离腔内气固两相的分离过程。具体考察了导叶下部柱段与锥段分离空间以及排剂口附近固相体积分数的分布情况,评估气固两相在分离腔不同部位的分离效果,重点对比分析了固相粒径差异对流动情况以及颗粒聚集的影响规律。计算结果表明:5斗m颗粒在分离腔的浓度分布规律不同于10μm和30μm颗粒,由于颗粒粒径较小易被气流携带,在分离空间以及排剂口都出现了不同程度的返混,对分离不利。
高浓度固液两相球阀开启压差特性分析
利用雷诺应力模型和欧拉—欧拉方法对固液隔膜泵出口球阀的开启压差及压力分布特性进行了理论推导与仿真分析,以纯液相压力特征为基础,进一步研究了多参数下高浓度固液两相流进出口压差的变化规律并相应地建立了压差理论及回归数学模型。研究结果表明,球阀出口压力为1.0 MPa,阀球材质为氟橡胶包覆硬铝质芯时,理论分析所得球阀开启所需压差为3.99×105 Pa,而球阀开启后,模拟得到进出口压差及轴向液动力迅速衰减,低压力区出现于阀座上下顶角间的10 mm 环形阀隙中心区域,其轴向位置随阀口开度增大呈线性下降。当流动介质为高浓度液固两相流时,阀隙内部射流加速段上移至阀座上顶角 z =30 mm 处,球阀进出口压差达到了单相流压差的8倍以上,并且得到了各物性和操作参数(阀口开度、固相浓度、混合粘度、入口流量等)对压差...