利用超声波检测流量的高精度系统
讨论了超声波在流体内传播过程中流速补偿问题,建立了流量测量的数学模型,并给出测量系统的结构框图.针对超声检测流量中的流场分布情况,采用高电压窄脉冲信号触发超声波发射电路、高频振荡计数与相敏检波相结合的高精度在线检测方法提高测量的精度,并利用系统内存储的测量环境数据和实际测量时的温度对测量结果进行补偿,保证测量的稳定性;分析了测量误差来源以及消除误差的方法.
隧道状态下纳米级振动检测技术的研究
使用德国SIOS公司生产的纳米坐标测量机微动平台作为调整机构,配合自行研制的隧道电流传感器,通过外加振动源,在隧道状态下对纳米级振动进行了检测实验.纳米级振动的研究既可以分析微弱振动对扫描隧道显微镜的作用机理,为以后的扫描隧道显微镜设计提供参考,又可以使振动测量的结果作为扫描隧道显微镜的振动补偿,提高扫描隧道显微镜的测量精度.
微结构运动特性表征中的全场三维重建方法
微机电系统(MEMS)测试的主要目的是为工程开发中的设计和模拟过程提供数据反馈,其中一个重要方面就是MEMS器件运动特性的高速可视化。基于计算机控制的频闪干涉测试景统,丈中提出了一种时间轴和空间轴双向解包裹的干涉条纹分析方法,实现了MEMS器件离面运动参数的精确测量,并与微结构平面结构图像模板相结合,可以进行MEMS器件全视场运动的分析,达到了纳米级分辨力。
一种高精度的超声波检测流量系统
基于流体的混合长度理论,讨论了超声波非接触测量中的流速补偿问题,给出了测量系统的硬件结构框图.针对超声波检测流量中流场分布的特点,提出了高精度检测流量的实用方法,并详细介绍了测量中软件的实现过程,还分析了测量误差来源及消除误差的方法.
测量微悬臂梁曲率的相移显微干涉法
提出了一种基于显微干涉和有限差分法在微悬臂梁上实现曲率精确测量的方法。该方法将使用相移显微干涉法测得的微悬臂梁表面弯曲信息与用有限差分法解析的弯曲量进行对比,再运用拟牛顿算法或最小二乘法得到曲率的最佳匹配值。实验结果表明:使用该方法可获得弯曲量测量值和解析值之间的均方根差值在1.5nm以内的精确曲率值,并且一定的像素偏移带来的误差对曲率测量的结果影响很小。由于方法保留了光学干涉法高分辨率及高精度等优点,并考虑了非理想边界条件的影响,在MEMS残余应力和应力梯度测量中具有较大实用价值。
利用Mirau显微干涉仪测量微器件的纳米级运动
描述了一种用于微机电系统(MEMS)纳米级微运动测量的Mirau显微干涉系统.该系统利用商业化的Mirau显微干涉仪,它直接安装在光学显微镜上,用于测量一个表面微加工水平谐振器的三维运动.面内运动取决于亮场在最佳焦平面处的图像,而离面运动则取决于频闪得到的干涉图像,该图像在物镜纳米定位器的8个不同位置处得到.实验结果表明了系统进行面内和离面运动测量的纳米级分辨力.
微悬臂梁谐振技术检测溶液粘度的研究
提出了一种测量溶液粘度的微悬臂梁谐振技术.推导了溶液粘度与微悬臂梁的谐振频率的理论关系式,并利用原子力显微镜的微悬臂梁测量了不同质量分数的甘油溶液和蔗糖溶液的粘度.与落球法测量结果的比较表明,利用微悬臂梁谐振频率技术测量液体粘度的误差小于4%.这种方法不仅可以作为液体粘度的一般性测量方法,也可以通过检测溶液粘度变化来监测溶液中的化学反应.
利用频闪成像方法进行微机电系统的计量
为了实现MEMS器件的计量,一个基于频闪成像原理的MEMS动态测试平台被构建,用于在全频率、相位和电压输入范围内表征器件的全三维运动.系统利用高亮度LED和LD作为脉冲光源,有效冻结MEMS器件的面内和离面运动,能在从静止状态到1MHz很宽的频率范围内对MEMS器件进行表征,达到了纳米级分辨力.通过实验对一个微谐振器进行了三维运动测量,在扫频和扫幅两种工作模式下,配合强大的数据分析软件,给出器件运动的幅频和相频特性曲线,为分析器件的动态性能提供了可靠数据.
利用纳米测量机实现大范围的计量型原子力显微镜
利用纳米测量机(NMM)和原子力显微镜(AFM)实现了大范围的计量型AFM,测量范围可以达到25mm× 25 mn×5mm,分辨力为0.1 nm.纳米测量机扩展了普通AFM测头的测量范围,减小了压电扫描器固有特性的影响.运动全范围内的自适应误差补偿通过5个自由度的闭环操作得以实现.系统的高精度是通过3个微型激光干涉仪的零阿贝误差设置,一个表面传感AFM测头以及两个角度传感器实现.系统具有4种工作模式,其中第4种为最佳工作模式.实验结果表明系统具有高精度和大范围的特点.
高精度的超声波在线流量测量
针对超声波检测流量过程中的流场分布问题,提出一种高精度在线检测的实用方法及其实现装置.基于混合长度理论对流速进行补偿,建立了测量的数学模型,给出了测量系统的结构框图,并且分析了测量误差的来源以及消除误差的方法.