风雨耦合下大型冷却塔流场特性与表面气动力
现行冷却塔结构抗风设计均忽略了降雨带来的影响,但在强风暴雨极端气候条件下,暴雨亦会直接影响塔筒内、外表面气动力并改变脉动风的湍流效应,而传统研究大多仅关注风驱动雨对于结构表面的冲击效应。为解决该问题,以国内已建世界最高220 m大型冷却塔为例,以风-雨双向耦合算法为核心,首先采用计算流体动力学(Computational fluid dynamics,CFD)技术对冷却塔周围风场进行数值模拟,并将表面风压分布与规范及实测曲线进行对比验证了风场模拟的有效性;再添加离散相模型(Discrete phase model,DPM)并进行雨滴和风场的同步迭代计算。在此基础上,系统研究了塔筒内外表面风驱雨量、雨滴附加作用力和雨致压力系数等影响规律,揭示了风雨场中塔筒表面速度流线、湍动能强度、雨滴运行速度和轨迹的作用机理。最终提出了基于风雨双向耦合算法的风-雨致等效压力系...
扑旋翼飞行器气动特性分析及机翼拓扑优化设计
建立微型扑旋翼飞行器运动学模型,基于面元法研究低雷诺数下非定常场中扑旋翼飞行器的气动特性,得到机翼气动特性和一个工作周期内的最大气动载荷。建立扑旋翼飞行器机翼有限元模型,基于变密度法和独立连续映射法(Independent continuous mapping,ICM)对机翼进行静力学和动力学拓扑优化设计,通过改变机翼拓扑结构优化机翼模态频率,得到同时满足结构静力学和动力学要求的扑旋翼飞行器机翼拓扑结构。本文为扑旋翼飞行器机翼结构优化设计提供了基本思路和研究基础。
前飞速度和升力偏置量对共轴刚性旋翼气动特性影响分析
共轴刚性旋翼前飞状态的气动特性主要由工况环境中的来流速度、密度和桨叶的翼型配置、弦长分布和扭转分布等气动布局参数决定。气动布局参数的综合影响决定了共轴刚性旋翼的的升力偏置量。了解前飞速度和升力偏置量对前飞性能的影响规律有利于设计更适合于高速飞行的共轴刚性旋翼。因此,本文通过求解可压雷诺平均N-S(Reynolds-averaged Navier-Stokes,RANS)方程对4 m直径的由两副2片矩形桨叶旋翼构成的共轴刚性旋翼模型的前飞流场进行了数值模拟,获得了不同前进比下的气动力并对不同升力偏置量下的旋翼性能进行了对比。数值模拟结果表明,随前进比增大,桨叶展向拉力分布更加趋于合理,拉力中心向桨叶中段移动,可以充分给桨尖卸载;旋翼升力主要由前行侧桨叶提供,升力偏置量过大容易产生激波诱导失速,不利于高速前飞。
共轴刚性旋翼气动干扰数值计算方法
建立了一个适用于共轴刚性旋翼气动特性分析的数值模拟方法。该方法采用任意拉格朗日欧拉方法(Arbitrary Lagrange Euler,ALE)描述的可压缩Navier-Stokes(N-S)方程求解流场,采用低数值耗散的Roe格式进行空间离散;使用多重嵌套网格方法以模拟双旋翼的运动。针对共轴刚性旋翼配平,引入“差量修正“策略解决了传统配平中雅克比矩阵计算复杂的问题。首先,对Harrington-2共轴双旋翼的悬停气动性能进行了计算,然后,对某2 m直径共轴双旋翼的悬停及前飞状态进行了计算,并与试验值进行了对比。结果表明:在典型状态下拉力系数的计算结果与试验值误差在3%以内,扭矩系数的计算结果与试验值误差基本在5%以内;所采用的数值计算方法对旋翼涡尾迹特征具有较高的捕捉精度,可以有效模拟共轴刚性旋翼悬停和小速度前飞下的复杂流场及其细节特征。
共轴刚性旋翼气动外形优化设计
采用前行桨叶概念(Advancing blade concept,ABC)的共轴刚性旋翼构型的直升机具有高速前飞的能力,然而大前飞速度带来的强桨尖压缩性等影响对桨叶气动外形提出了更高的要求。鉴于此,本文针对共轴刚性旋翼的气动布局进行了优化设计,通过改进桨叶平面外形提升旋翼前飞性能。基于雷诺平均NS(Reynold-saveraged Navier-Stokes,RANS)方程对共轴旋翼流场进行了气动性能数值模拟,在此基础上建立了代理模型结合遗传算法(Genetic algorithm,GA)的高效共轴旋翼气动布局优化方法,以前飞升阻比为目标函数进行优化,得到约束外形下的具有非线性弦长分布、尖削及后掠特征的桨叶外形。试验结果表明优化桨叶相比基准矩形桨叶升阻比得到明显的提升(前进比为0.6状态下升阻比提升约30%),证明了优化的有效性。
前缘缝翼构型平尾直升机气动特性分析
使用数值模拟方法研究了前缘缝翼翼型气动特性,并将该前缘缝翼翼型应用于直升机平尾,分析了该直升机全机气动特性,最后通过风洞试验对数值模拟结果进行验证。结果表明,前缘缝翼构型平尾能有效改善直升机的纵向静稳定性。
充气式气动减速器的折叠方法及充气过程数值仿真
针对充气式气动减速器难以建立折痕有序、径向压缩的折叠模型,本文提出了分割映射折叠方法。首先基于分割映射技术得到分割展平面;其次通过矩阵变换将分割展平面转换为连续的几何折叠模型;最后,采用初始应力修正了建模过程中的模型误差,降低了充气过程中的应力集中和网格畸变问题。数值结果表明:充满的单圆环的表面积和体积误差仅为1.8%,验证了本文折叠方法的高精度;充气式气动减速器的初始和充满外形与实验外形一致,展开过程稳定、有序,说明该方法的可靠性和适用性。本文折叠方法适用于任意旋转曲面的多维压缩和有序折叠,提高了曲面展开数值仿真的精确度和稳定性。
计入静位移作用的粘弹阻尼器双线性迟滞模型
在传统的粘弹阻尼器双线性迟滞模型基础上,为了便于参数识别,将滑移迟滞恢复力等效成黏性阻尼力与分段线性弹性力的联合作用,引入指数衰减函数表征弹性力及阻尼力随激振幅值的变化规律,并导出了带静位移的粘弹阻尼器复模量计算模型。提出一种结合复模量及迟滞回线进行参数识别的方法,并通过实例验证了改进模型的准确性及参数识别法的有效性。分析了静位移对迟滞回线及复模量的影响,结果表明静位移的变化使得迟滞回线沿弹性力曲线移动,并由于非线性刚度的影响,迟滞回线的形状也发生了变化;在模型采用奇次弹性力和线性黏性阻尼力的条件下,储能模量随着静位移的变化成偶次函数的趋势变化,而耗能模量则不受静位移的影响;静位移对储能模量和耗能模量的影响源于粘弹阻尼器刚度和阻尼关于位移的非线性特性。
基于检查数据和物理退化模型的涡轮叶片检修策略优化
根据发动机涡轮叶片在日常使用过程中的损伤检修数据确定其失效概率分布函数,应用Paris公式对叶片裂纹增长进行反演分析,得到在指定阈值下可检裂纹长度与初检时间的对应关系;再模拟裂纹增长过程,得到叶片在寿命周期内各个检查时刻的状态;最后通过仿真结果的统计分析得知叶片的失效概率。案例研究结果表明:叶片在服役过程中如果初检时间太早,初检时扩展裂纹长度小,不易被检测到,后续的重复检查间隔长,在各重复检查时刻容易产生失效;如果初检时间太迟,叶片在初检时会接近甚至超过临界损伤值,也增加失效概率。在允许失效概率为10-5的条件下,涡轮叶片在计划运行周期内的最优检查次数12次,最优初检时间和重复检查间隔分别为1 371循环和307循环。所提方法和研究结果为航空公司机务维修人员和发动机工程师的风险评判和...
某型无人机导轨起飞装置气液压能源系统的应用
介绍了以气囊式蓄能器和液压缸为主构成的某型无人机导轨发射装置的气液压能源系统并对气囊式蓄能器和液压缸的动态参数特性及其匹配关系进行了理论分析计算和动态特性试验.计算和试验结果表明该气液压能源系统所确定的气液压能转换成机械能后能够满足无人机起飞所需的动力并在某型无人机导轨发射装置中得到了工程应用.