基于正面碰撞汽车前纵梁结构优化设计分析
汽车发生正面碰撞时,前纵梁和防撞梁组成的吸能结构的承载能力直接影响到整车的安全性能。根据前纵梁的结构特点和碰撞吸能过程的变形特征,建立前纵梁的有限元分析模型;对前纵梁在吸能过程中的失效形式进行分析;压溃失效和折弯失效是两种主要的失效形式;折弯失效发生时,前纵梁失去原有的设计吸能作用,而临界角是发生折弯变形的最要指标;针对影响前纵梁折弯变形临界角的主要因素进行分析,包括长宽比、材料厚度、壁障摩擦系数等,获得结构参数对性能的影响规律;根据影响规律对某汽车前纵梁结构进行优化设计,并采用落锤压溃试验对结构优化前后的性能进行对比分析。结果可知前纵梁发生弯曲变形时存在临界角度,对轴向承载影响较大;前纵梁的长宽比、壁障接触面摩擦系数是影响临界角度的重要因素;材料厚度的影响较小;降低长宽比,增大...
基于碰撞安全性具有引导结构汽车前纵梁设计
前纵梁抵抗弯曲变形的能力直接影响整车碰撞安全性。针对前纵梁进行引导结构优化设计,以提升抵抗弯曲变形能力。基于前纵梁弯曲变形工况,分析前纵梁弯曲变形的截面受力变形模式;外延变形具有最好的弯曲变形承载能力;设计具有外延变形和对称变形交替出现的前纵梁结构,选用开引导槽的结构形式进行优化设计;基于碰撞法规,选取正面100%刚性壁障碰撞和正面40%可变形壁障碰撞进行改变前后的性能验证;选取加速度、变形等指标进行对比分析。结果可知外延变形承载能力最强,当外延变形和对称变形交替出现时,梁结构承载弯曲变形的能力最强;开设引导槽的间距需要满足外延变形波长和对称变形波长之和的整数倍;从两种碰撞工况前纵梁变形模式来看,改进设计使前纵梁的变形更为稳定,出现轴向稳定变形模式,同时提高了部分吸能特性,提高了整车的耐...
基于正交试验不同截面汽车前纵梁特性分析
前纵梁是汽车发生正面碰撞时重要的能量吸收结构,对汽车碰撞安全和乘员保护具有重要作用。根据前纵梁结构特点,对其进行简化为薄壁梁结构,采用试验分析和模型仿真相结合的方法对矩形截面前纵梁的吸能特性进行对比分析;试验表明模型仿真结果的准确性。以仿真和试验分析结果的结论作为参考依据,选取影响前纵梁吸能特性的材料、厚度、截面形式、引导槽倾角等作为正交试验的4个因素,截面形式为6水平,其他因素为3水平,设计了L18正交试验表,将结构总质量、碰撞过程最大支反力作为约束,单位质量最大支反力作为目标进行不同截面前纵梁对比分析;分析结果可知试验分析与建模仿真结果曲线的误差在10%以内,表明模型的准确与可靠性;前纵梁的截面形式为十字形、无设计倾角,材料则选择高强钢,厚度为1.6mm时,前纵梁的吸能性能最优,可以作为实际设计...
基于偏置碰撞工况汽车前纵梁结构优化设计
偏置碰撞工况发生时,前纵梁将出现折弯变形,严重影响其承载吸能作用的发挥。根据偏置碰撞的特点,搭建车辆正面40%可变形壁障碰撞仿真分析模型,选取三种不同的初速度50km/h、56km/h和60km/h进行分析,获取车身和前舱总成的变形过程;基于分析结果,对前纵梁弯曲变形的吸能过程和失效特点进行分析;采用引导槽和约束板相结合的结构形式对前纵梁进行优化设计,并对尺寸参数进行设计;基于碰撞模型,对优化前后的车辆安全性进行对比分析。结果可知前纵梁弯曲失效中,向外胀形和向内径缩交替出现的变形形式可以提升承载能力;引导槽式结构和约束板结合的设计形式,可以提升前纵梁发生弯曲变形时的承载能力;引导板的布置间距应为外胀变形与径缩变形模式的波长之和;优化后,碰撞加速度、变形模式和各测点的侵入量均有明显的提升变化,各测点侵入量均较小,...
考虑正面碰撞特性汽车前纵梁轻量化设计分析
前纵梁承载和吸收车辆正面碰撞的能量,保证安全性的前提下,可以通过厚度减薄实现轻量化。针对前纵梁的结构特点,采用强度等效减薄理论开展轻量化设计;在分析传统强度等效减薄公式的基础上,考虑材料变化后,相关的参数因素、残余应力、尺寸偏差和屈强比因素的影响,对公式进行修正;对某车型前纵梁开展优化设计,材料由DP590提升为DP780;对优化后的成形工艺进行分析;根据C-NACP正面碰撞要求,建立前纵梁总成碰撞分析模型,获取总吸能和承载力参数变化,并采用整车正面碰撞对比分析,以验证优化后零件的碰撞安全性。结果可知根据修正公式,厚度由1.6mm减薄至1.4mm,实现轻量化减重12.5%;轻量化后,总成的能量吸收有较大提升;结构的最大承载力由346kN降低到322kN,降低了7.45%,表明整个过程的载荷呈现变缓的趋势,对于乘员保护是有利的;试验与模型分析结果对比,...
基于BB-MOPSO算法的微型车前纵梁优化
前纵梁作为汽车正面碰撞中主要的吸能和变形结构在汽车安全问题中具有重要研究意义。选取某微型车前纵梁结构为研究对象进行厚度优化设计。首先利用最优拉丁超立方的方法进行设计变量样本空间的设计,然后在已经建立好的整车模型中进行相关参数修改并进行仿真计算,并根据输出数据建立整车瞬时加速度及前纵梁比吸能的二阶响应面代理模型。应用多目标骨干粒子群(Barebones Multi-Objective Particle Swarm Optimization,BB-MOPSO)算法采用自编MATLAB代码得到了分布均匀的瞬时加速度以及前纵梁比吸能的Pareto前沿。该算法在车辆结构优化问题中的使用有效的避免了目前被广泛使用的NSGA-Ⅱ算法Pareto前沿分布均匀性差的不足。最终前纵梁比吸能提高了16.2%,整车正碰瞬时加速度减小了3.6%,前纵梁质量减轻6%,在提高了汽车安全性的同时保证了轻量化。
汽车前纵梁正面碰撞仿真分析研究
对某车的前纵梁在100%正面碰撞中的变形吸能进行仿真分析,使用HyperMesh建立有限元模型.使用LS—DYNA得到计算结果,在HyperView中对计算结果进行后处理得相关的响应,进而分析前纵梁在整车正面碰撞中的变形吸能过程。
某车型前纵梁正面碰撞仿真研究
以某车型前纵梁为研究对象,首先根据所给数据运用CATIA进行三维建模,应用Hypermesh进行前处理,将处理后文件提交LS-DYNA进行计算,并在Hyperview中查看计算结果并进行分析。仿真过程基于碰撞方程理论知识,将结果与仿真分析进行对比。仿真结果表明,前纵梁在碰撞中变形吸收大部分能量,并伴有一定的加速度,仿真结果为车辆碰撞实验提供了一定指导意义。
-
共1页/8条