非球面曲面光学零件超精密加工装备与技术
"Nanosys-300非球面曲面超精密复合加工系统"是 "九五"重点预研课题-"非球面曲面的超精密加工与测量技术"的主要研究成果.重点对非球面曲面光学零件超精密加工机床,非球面曲面光学零件超精密加工工艺,非球面曲面光学零件超精密测量技术进行了研究.其主要技术成果有:非球面超精密复合加工系统综合设计和制造技术,高速超精密空气静压主轴系统,超精密闭式液体静压导轨系统,高速超精密空气静压磨头电主轴系统,开放式高性能数控系统集成技术等.系统的精度检测和工艺实验表明其研究水平进入了国际先进行列.
一种微型变焦系统的设计
为适应某些特殊领域对微型化和简单化的需要,运用光学设计软件CODEV,在传统机械补偿式变焦镜头的基础上,结合非球面透镜理论,设计了一个可见光波段的只有一个移动镜的4片式微型变焦系统。此系统具有结构简单、精度高、成本低、体积小等特点,可满足在变焦范围内连续清晰成像的要求。
结构简洁、高分辨率手机镜头的设计
讨论了结构简洁、高分辨率的手机镜头的光学设计问题,对现有的手机光学系统进行了总结和研究,利用光学设计软件CodeV,结合非球面透镜理论,设计出可用于可见光波段且符合结构简洁、成像品质高、生产成本低要求的手机定焦镜头。镜头长度较短,采用非球面塑料透镜,生产成本较低,成像性能良好,满足使用要求。
高变倍比数码变焦镜头设计
为提高变焦距系统的工作性能,使其在大视场时仍具有良好的像质,且系统结构简单,易于机械设计、加工及装调,在设计中引入了传统球面光学设计与非球面相结合的设计思想。选择4个焦距位置进行设计计算,用光学设计软件ZEMAX上机调试,设计了焦距为6.9mm~91.6mm,视场5°~60°的变焦系统,整个系统由4组12片透镜组成,其中包括3个非球面,系统具有变倍比高、视场大等特点。设计结果表明:在设计中采用非球面可使系统结构紧凑,系统成像质量得到提高。
一种数码相机定焦镜头的光学系统设计
为适应市场上对结构简洁、成像品质高且生产成本低的数码相机镜头的需要,运用光学设计软件CODEV,在传统数码相机定焦镜头的基础上,结合非球面塑料透镜理论,模拟出了生产成本较低的三片式数码相机定焦镜头。该数码相机镜头结构的特点是:模块仅包括3块透镜;选择塑料镜头代替玻璃/塑料混合镜头或者全玻璃镜头,降低了系统的生产成本;系统的后焦距增大到0.8116mm,能够确保良好的远心光路性能;透镜表面完全采用非球面设计,较好地校正了球差等各种像差,使透镜具有良好的光学成像性能。
小畸变大视场CCD相机光学系统的设计
为提高CCD照相机的成像质量,同时使镜头结构紧凑、小型化,在大视场光学镜头的设计中,采用非球面设计。通过理论计算和ZEMAX光学设计软件的优化,给出工作波长为0.4~0.7μm、全视场角为51.15°,相对孔径为1:3的镜头设计实例。该系统采用“天塞型”结构,加入两个非球面后,在501p/mm空间频率处的MTF值超过0.62,全视场畸变小于0.1%,像质优良。
接触式大型非球面镜面形测量中测量点分布的确定
为准确有效地检测大型非球面光学元件的面形,研究了接触式测量光学元件的测量点分布方式。使用不同密度的径向分布及均匀分布的测量点分别对以不同Zernike多项式表示的面形偏差进行采样,然后计算采样所得面形相对给定面形PV值及RMS值的最大相对误差,并对计算结果进行了分析。对1.8m抛物面镜面形实测结果表明:在镜面加工的成型及粗磨阶段,由于面形偏差主要呈旋转对称分布,低密度径向分布测量点即可满足继续加工的检测需求;在精磨及初抛阶段,面形偏差主要为像散或其它非对称面形偏差,测量点均匀分布是提升测量精度的有效手段。此分析方法可以指导测量点的排布方式,从而确保由测量点分布引入的测量误差小于镜面本身面形误差的1/5,提高检测效率。
用于非球面通用化检测的部分零位透镜
非球面的非零位法检测高效快速,并可实现较高精度的通用化检测。介绍了一种可用于非球面非零位检测中降低检测光波前斜率的部分零位透镜。该透镜具有较大的球差,可以显著补偿被测非球面的纵向法线像差,使得返回的检测光波前能够被探测器分辨。论述了部分零位透镜的设计过程,特别是约束控制条件以及初始结构的选取原则,并就相对口径为.f/2和.f/1.5的两个抛物面给出了设计实例。设计结果表明:该部分零位透镜可以对一定口径和相对口径范围内的非球面实现部分零位补偿。利用一系列部分零位镜将可以对较大范围内的非球面进行补偿,从而实现常见非球面的通用化检测。该研究对非球面的通用化检测具有重要意义。
基于磁流变技术的非球面柔顺数控研抛工具研究
针对目前磁流变抛光成本高、抛光力控制复杂的问题,开发了一种新的基于磁流变技术的非球面柔顺数控研抛工具系统,由磁流变阻尼器(MRD)控制研抛过程中的研抛力,由数控车床控制研抛工具位置。介绍了工具系统的组成,阐明了基于MRD的研抛原理,分析了研抛工具与非球面工件之间的接触力及其动态传递过程,建立了研抛力模型和工具系统动态模型,并进行了参数辨识和仿真研究,得到了系统的传递函数的和PID控制器的相关参数,最后进行了系统动态性能和研抛实验验证,实验结果表明,开发的研抛工具系统,具有较好的响应特性,可以实时控制研抛过程中的研抛力,可获得表面粗糙度Ra=0.028μm的非球面镜面表面。
非球面加工工艺实验研究
由于非球面零件本身的特殊性和复杂性,较球面零件加工更加困难。基于自主研发的切线法数控成形非球面机床,分析加工零件表面精度的影响因素。采用单因素法分别对砂轮参数、冷却液影响因素进行分析,着重分析砂轮磨损和磨轮转速误差。严格控制加工过程中所产生的误差,避免由于过多误差影响最终零件的面形精度和表面粗糙度,优化工艺流程。