基于概率神经网络的液压管路泄漏故障程度识别
针对复杂环境下飞机的液压管路系统在故障诊断时存在的各种问题,提出一种基于概率神经网络的液压管路系统泄漏故障的诊断方法。在飞机液压管路系统中主要产生的故障是由于管路系统的振动导致的管路破裂、泄漏等。对飞机液压管进行建模,分析其工作状态下不同液压泄漏故障程度时的固有频率,选取前5阶固有频率作为故障诊断的特征值;构建PNN概率神经网络诊断模型,利用测试样本进行故障诊断实验。结果表明,该方法对液压管路故障具有较高识别率。该研究为液压管路系统的故障诊断提供了参考。
基于神经网络的铝合金裂纹缺陷识别
将人工神经网络方法应用于铝合金工件裂纹缺陷识别,以克服传统人工识别的局限性,从而提高裂纹缺陷识别的准确率。通过设计并搭建水浸超声检测系统,获得超声检测缺陷的波形数据,并对收集到的缺陷波形数据进行特征提取,从中筛选出有用的特征信息,经过小波去噪处理后作为特征信号输入概率神经网络,并进行网络训练,实现对不同裂纹尺寸的智能识别。实验结果表明:该方法可提高对裂纹缺陷尺寸识别的准确率和检测效率,具有较好的应用前景。
VMD-模平方阈值与PNN相结合的齿轮故障诊断
针对故障齿轮振动信号的非平稳和调制特性,提出了在变分模态分解(VMD)-模平方阈值降噪的基础上利用概率神经网络(PNN)进行齿轮故障诊断的方法。首先,利用VMD将原始振动信号分解为若干个本征模态函数分量,采用模平方阈值方法对各分量处理后并重构;然后,提取重构信号的峭度和均方根作为特征值组成特征向量;最后,将特征向量输入PNN实现故障类型识别。通过齿轮故障试验分析,将其与基于EMD-模平方阈值、LMD-模平方阈值和EEMD-模平方阈值的BP神经网络故障诊断方法相比较。结果表明,该方法能有效的提取特征信息,故障诊断准确率高达96.875%,证明了所提方法的可行性和有效性。
改进烟花算法和概率神经网络智能诊断齿轮箱故障
针对复杂环境下农机设备的齿轮箱系统在故障诊断时存在易受现场噪声干扰和故障识别率低等问题,提出了一种基于改进的烟花算法和概率神经网络的齿轮箱智能故障诊断方法。为提高现有概率神经网络模式分类方法的性能,定义了一项样本相似度衡量指标以提高建模过程中训练样本的质量。将烟花算法与概率神经网络技术有机融合提出了一种改进的烟花算法-概率神经网络模式分类方法,利用烟花算法优化概率神经网络的平滑参数以确定网络参数的最优值,提高模式分类与识别精度。将改进的烟花算法-概率神经网络模式分类方法用于噪声环境下齿轮箱的故障诊断建模,构建故障特征参量与齿轮箱工作状况间的复杂非线性映射关系。应用结果表明,与基于BP神经网络、GABP(genetic algorithm back propagation)神经网络和概率神经网络的故障诊断模型相比,在不同程度...
基于EMD-SVD与PNN的行星齿轮箱故障诊断研究
针对行星齿轮箱振动信号故障特征提取困难的问题,提出了一种基于EMD-SVD与概率神经网络相结合的故障诊断方法。首先,利用经验模态分解方法将去噪后的振动信号自适应地分解为多个本征模函数。其次,利用相关系数和方差贡献率选取一定量的本征模函数,并将其构成的矩阵进行奇异值分解得到特征向量。最后,将特征向量输入概率神经网络进行故障诊断。在行星齿轮箱故障诊断实验台上进行了实验,并与基于能量熵构成的特征向量进行了对比,结果验证了该方法的有效性。
基于小波包与概率神经网络的液压泵故障模式识别
小波包具有良好的去噪效果和高频分析能力,而概率神经网络具有很好的分类效果。采用小波包分解重构液压泵故障特征信号,并提取第三层各频率段的节点能量作为特征向量,将特征向量概率神经网络模型的输入向量对液压泵故障模式进行识别。通过采用LabVIEW和MATLAB混合编写的识别软件系统对液压泵故障识别,证明了将该方法用在液压泵故障模式识别上,能取得良好的效果。