基于滑模观测器的PMSM改进无差拍电流预测控制
针对永磁同步电机因参数扰动、采样延迟、模型失配导致电流控制误差问题,提出基于滑模干扰观测器的改进无差拍电流预测控制。通过将模型参数不匹配引起的扰动引入到电机的电压方程中,构建滑模扰动观测器观测系统扰动;针对滑模控制的抖振问题设计了以sgn为基础的二阶趋近律消除固有抖振问题,并证明了控制器的稳定性;将滑模观测器中的预测电流代替采样电流解决控制延时的问题;将观测估计的系统扰动通过前馈补偿的方式与无差拍电流预测控制相结合,进而提高无差拍电流控制的参数鲁棒性。结果表明:在参数扰动和模型失配时,提出的控制方法可以有效补偿系统扰动,系统稳态误差减小,有效提高了系统鲁棒性。
基于改进超螺旋算法的永磁同步电机快速积分终端滑模速度控制
针对永磁同步电机伺服系统的滑模速度控制存在抖振和鲁棒性不强问题,采用改进积分终端滑模面与广义超螺旋相结合的方法设计转速控制环。提出分段滑模面的方法设计改进的快速积分终端滑模面,可以使得抖振问题得到明显改善;设计改进的广义超螺旋控制器作为切换控制,能够更好地改善系统的动态特性,并证明了此算法的稳定性。仿真结果表明:该方法具有抑制抖振性能强、收敛速度快和跟踪性能好等优点。
基于EKF的PMSM失磁故障在线诊断方法
针对永磁同步电机(PMSM)永磁体失磁故障发生时磁链信号不稳定导致难以诊断的问题,提出基于扩展卡尔曼滤波(EKF)的PMSM失磁故障在线诊断方法。构建能够在线识别并动态矫正磁链的EKF方法,该方法可以根据自适应PMSM模型跟踪永磁体磁链信号的真实状态,并且不易受电机参数的影响。同时经过辨识的永磁磁链经过故障检测模块,计算磁链的变化量,判断永磁电机是否发生失磁故障。仿真结果证明:失磁故障检测模块通过分析经扩展卡尔曼滤波动态矫正的永磁磁链,可以在0.1 s内实现高效的故障诊断。
基于改进STO的IPMSM退磁故障模型预测MTPA容错控制
针对内嵌式永磁同步电机发生退磁故障时系统模型和参数发生改变,控制器控制性能严重下降的问题,提出基于改进STO的退磁故障模型预测MTPA容错控制策略。首先针对电机发生退磁故障,分析模型参数变化,重新构建故障模型,并且求解了考虑故障状态的MTPA曲线。然后针对模型预测控制对参数变化的敏感性问题,构建改进的STO观测器,对永磁体磁链在线识别。最后设计电流模型预测控制器,对退磁故障的IPMSM进行容错控制。通过实验对比,构建的观测器对退磁故障情况的永磁体磁链有更好的观测性能,并且容错控制策略也更优秀。
非对称V形内置式永磁同步电机电磁特性分析
非对称磁极内置式永磁同步电机可以在不降低电磁转矩的情况下有效降低齿槽转矩和转矩脉动,拓宽调速范围,电机结构可靠,制作难度低,在转矩性能要求高的场合具有广泛的应用前景。为研究非对称磁极转子磁场偏转后引起的电机电磁特性的变化,建立了新的数学分析模型,结合有限元分析方法对不同磁极结构永磁同步电机的电磁性能展开分析。仿真结果表明:非对称磁极结构可有效降低内置式永磁同步电机的转矩脉动和齿槽转矩;磁极正向偏移后在最大转矩电流比控制策略下具有更宽的恒功率区调速范围。最后,给出了非对称磁极永磁同步电机在实际工程应用时控制策略的实现方法。
新型变指数趋近律的PMSM滑模控制
针对永磁同步电机滑模控制系统符号函数容易出现抖振问题,提出一种基于新型饱和函数的变指数趋近律结合非奇异快速终端滑模控制方法,并利用李雅普诺夫不等式证明其稳定性。考虑到外界负载转矩对系统性能的影响,建立非奇异终端滑模扰动观测器,将转矩的观测值转换成转矩电流前馈补偿至电流环输入端,避免了较大的滑模增益,克服外界突然加扰动时系统的抖振问题。仿真和实验结果表明:改进的新型滑模控制器结合扰动观测器可有效减小系统抖振,提高控制系统的动态响应能力和抗干扰能力。
基于电压谐波注入算法的PMSM转矩脉动抑制研究
在永磁同步电机矢量控制系统中,受电流谐波的影响,电机产生转矩脉动。为了解决此问题,利用谐波注入原理设计一种电压谐波注入器。利用坐标变换提取待消除次数的电流谐波,考虑到基波会影响到谐波的提取精度,设计一种消去基波的电流谐波提取结构。利用提取到的电流谐波,设计针对5、7次谐波的电压谐波注入器。最后通过实验对比,证明了所提方法能够明显抑制电机转矩脉动。
基于新型趋近律的PMSM模糊滑模控制
针对永磁同步电机的调速系统动态品质易受参数变化、外部扰动以及摩擦力等不确定因素影响而导致伺服性能降低的问题,提出一种改进的幂次指数趋近律,对该趋近律的参数k和ε引入模糊规则控制,有效抑制传统滑模变结构控制中的固有抖振问题,提升收敛速度。为了消除系统内、外部扰动引起的控制精度问题,设计一种新型扰动观测器进行观测。仿真结果表明:该方法能够实现精确的速度控制;与传统的滑模控制相比,在保留其优势的基础上,有效降低了滑模的抖振。
基于模糊PI的CVT用电动油泵控制研究
为了改善无级变速器(CVT)液压油泵存在较大溢流损失的问题,采用永磁同步电机驱动的电动油泵作为CVT的供油源,提出一种基于模糊PI的控制算法。该算法在矢量控制结构的基础上,利用模糊控制对PI控制器进行参数修正,以解决传统PI控制不能满足复杂控制系统的需求。为了验证该算法的有效性,在MATLAB/Simulink中完成两种算法下电机控制系统模型的搭建,并对控制结果进行比较分析。并完成CVT极限工作环境即车辆紧急制动工况下电动油泵基于该算法的仿真。结果表明:所提出的控制策略能够有效提高系统响应速度和抗干扰能力,并且基于该算法的电动油泵能满足CVT正常工作需求。
基于滑模自适应鲁棒的超高速电机调速控制
针对超高速铣削永磁同步电主轴高性能、高精度的控制需求,设计了一种滑模变结构自适应鲁棒控制器。该控制器利用滑模变结构控制产生滑动模态,削弱了建模误差的影响;利用自适应鲁棒控制减少了电主轴超高速运行中受外界扰动和系统内部参数摄动的影响。针对超高速运行的电主轴控制器控制周期时间短的特点,设计了基于比例谐振的电流矢量控制器,在保证电流控制效果的前提下减少了坐标变换和电流解耦,降低了控制算法实现的难度。仿真结果表明:基于比例谐振控制的电流矢量控制器能对给定电流进行较好跟随,