电液伺服增压系统压力冲击抑制方法研究
传统阀控增压系统通过开环控制换向阀来控制双作用增压缸高频次往复运动进而达到高压容腔的工作压力,但开环控制换向阀频繁阶跃换向会导致巨大的压力冲击,易造成系统元件损坏与管路破裂等问题,影响系统稳定性和可靠性。因此,基于增压缸位置闭环与主动调节液压泵输出压力的复合控制策略连续调节换向阀的阀芯位移,从而减小增压缸系统工作过程中液压冲击。利用多学科仿真软件SimulationX搭建所提增压系统液压仿真模型,与传统阀控增压系统试验所得曲线对比。结果表明所提系统增压缸油腔刚启动时压力冲击由19.45 MPa降低为7 MPa,运行过程中增压缸油腔压力冲击由4.8 MPa降低为1.11 MPa,液压泵压力冲击由18.3 MPa降低为2.8 MPa。此方法可有效降低增压系统压力冲击,具有良好的减缓冲击效果,有助于增强系统可靠性,延长元件及系统寿命,降低运维成本。
固定时间收敛的空空导弹直接力/气动力复合控制
针对带有直接力/气动力复合控制系统的空空导弹控制律设计问题,提出了一种基于固定时间收敛的滑模控制理论和动态控制分配技术的复合控制策略.首先,根据导弹纵向运动模型设计一种固定时间收敛的滑模控制器,获得建立导弹过载所需要的虚拟控制力矩,并实现过载跟踪误差在指定时间内收敛;其次采用动态控制分配技术将期望控制力矩分别映射到气动力和直接力装置;然后,通过李雅普诺夫理论证明了系统是固定时间收敛的,可以快速收敛到平衡点;最后通过数字仿真验证了所设计复合控制策略的有效性和可实现性.
-
共1页/2条