基于小波阈值与CEEMDAN联合去噪的滚动轴承故障模式识别方法研究
滚动轴承是机械设备中主要的故障源之一,它的失效将直接导致整台设备的运行失常。针对其典型故障模式,提出了一种基于小波阈值与CEEMDAN联合去噪的滚动轴承故障诊断方法。对信号进行小波阈值去噪,利用CEEMDAN算法对降噪后信号进行分解,基于互相关系数分析提取典型的IMF分量,并对所提取的IMF分量进行时、频域特征分析,从而进行故障诊断。首先通过对模拟信号完成CEEMDAN法与总体平均经验模态分解(EEMD)对比分析,证明该方法优于EEMD分解,继而以模拟实验为验证实例。研究结果表明了小波阈值和CEEMDAN方法在滚动轴承故障模式识别中的有效性。
基于ICEEMDAN-GRNN神经网络的往复泵故障诊断方法研究
往复泵作为石油石化行业重要的输送设备,通过振动监测手段来保证系统的安全稳定运行具有重要的现实意义。如何对往复泵的非平稳和非线性信号提取特征并进行准确识别是诊断中的关键问题。针对往复泵故障特征的提取,提出了一种利用ICEEMDAN-GRNN神经网络相结合的诊断方法。首先利用ICEEMDAN对采集的原始信号进行分解得到若干个IMF分量,然后计算IMF分量的奇异谱熵并构造特征向量,再将特征向量输入到GRNN神经网络进行训练和模式识别。研究表明该方法可以有效提取往复泵的故障特征并进行准确的模式识别。
基于改进型ESMD和动力学模型的齿轮箱冲击特征提取方法研究
齿轮箱振动信号具有非线性冲击特征,其有效特征信息易于被振动信号其他干扰成分所淹没。针对如何有效提取其冲击特征这一热点和难点问题,通过构建直齿锥齿轮动力学模型,研究其典型故障振动机理,提出了一种基于改进型极点对称模态分解(ESMD)和支持向量机(SVM)相结合的故障诊断方法。该方法通过改进型ESMD将振动信号自适应分解为多个IMF分量,然后利用最大峭度-包络谱指标选取一定量的分量并提取每个分量的奇异值,构建特征向量集合并输入SVM进行故障模式识别。动力学仿真模拟和齿轮箱实验研究表明,改进型ESMD-SVM法能够有效提取并识别齿轮箱故障信息。
基于CEEMDAN-DRT的滚动轴承故障诊断方法研究
针对滚动轴承故障信息不易提取的特性,提出了完全集合经验模态分解(CEEMDAN)自适应消噪和共振解调技术(DRT)相结合的故障诊断方法。首先,利用CEEMDAN自适应地将信号分解成多个分量,通过互相关系数方法进行重构以达到消噪的目的;然后,对重构的信号进行谱峭度分析,得到冲击成分所在的频带,并据此设计带通滤波器对重构信号进行滤波处理;最后,对滤波后的信号进行Hilbert包络谱分析,提取冲击成分的频率,并与滚动轴承故障特征频率对比,进行故障模式识别。通过动力学仿真和滚动轴承实验对该方法进行了有效性论证。结果表明,该方法可以有效识别滚动轴承的故障信息。
基于自适应VMD与GRNN的转子系统故障诊断方法研究
提出一种基于自适应变分模态分解(Variational Mode Decomposition,VMD)与广义回归神经网络(Generalized Regression Neural Network,GRNN)的故障诊断方法,有效解决转子系统振动信号特征提取与复合故障模式识别的问题。首先通过VMD将采集到的原始信号自适应分解为一系列的内涵模态分量(Intrinsic Mode Functions,IMF),然后根据相关系数-峭度准则选取IMF分量进行信号重构。最后获取重构信号的精细复合多尺度散布熵(Refined Composite Multiscale Dispersion Entropy,RCMDE)、均方根以及重心频率构成特征向量集,输入到GRNN神经网络进行训练和故障模式识别。数值仿真与故障模拟实验结果表明:采用基于自适应VMD与GRNN神经网络的方法可有效识别转子系统中的多故障模式。
-
共1页/5条