S能量分布特征和SVM在齿轮故障诊断中的应用
准确提取振动信号特征,是齿轮故障诊断的关键问题。为此,提出了一种基于S变换能量分布特征和SVM的故障诊断方法。首先对齿轮故障信号进行S变换得到时频矩阵,然后利用该矩阵构建能量分布特征。最后建立SVM齿轮故障识别模型,将对应的特征样本输入到模型中进行训练和识别,以达到对齿轮故障的准确分类。将所提出的方法应用于齿轮故障检测和诊断。通过实际故障实验数据对所提方法进行了验证。结果表明,该方法能够有效地降低噪声的影响,能够准确地识别齿轮故障,具有较高的准确率和使用价值。
齿根裂纹对直齿轮啮合刚度的影响研究
以渐开线直齿圆柱齿轮啮合副为研究对象,采用有限元法计算了含齿根裂纹的故障齿的啮合刚度,分析了齿面接触应力分布特性,载荷的齿向分配特征以及载荷在齿面上随裂纹深度与裂纹角度变化时的分配比例关系,对比研究了齿根裂纹深度和裂纹角度变化对齿轮啮合刚度的影响。计算结果表明裂纹深度引起的啮合刚度变化相比裂纹角度引起的刚度变化明显,单齿啮合状态下刚度的变化更为突出;裂纹深度相比裂纹角度载荷分配系数变化剧烈;裂纹深度与裂纹角度引起的齿面应力变化相比正常齿显著;齿面间载荷分配呈非线性变化。
小波基最优化在齿轮箱振动信号中的应用分析
为了提高齿轮箱低频振动信号准确表征其运行状态和高频振动信号表征故障特征的效果,通过对小波原理及小波基优化理论进行分析,选取适用于处理齿轮箱振动信号的小波基进行小波变换,将均方根误差及信噪比作为除噪性能的评价标准,获取最优小波基。基于小波变换对振动信号多层分解的特性,将最优小波基运用其中,分别重构出近似齿轮箱运动状态的低频信号,以及能够表征故障细节特征的高频信号。实验结果表明最优小波基的应用有利于提高齿轮箱低频信号表征其运行状态频率的准确率和高频信号细节特征提取的效果,为工程实际中齿轮箱的故障诊断提供了理论基础。
基于FIR分解的轴承故障快速诊断方法研究
为实现轴承故障的快速准确诊断,以互相关和互信息为基础构造一种针对轴承的快速故障诊断方法。该方法首先运用有限长单位冲激响应(Finite Impulse Response,简称FIR)滤波器对各单一故障(包括内圈、外圈、滚珠、保持架)振动信号进行分解,降低信号分解过程中因模态混叠造成的干扰,以力学分析建立的各故障振动模型为参考,对分解后的子信号采用互相关分析法,选出表征故障特征的子信号,计算子信号透露的信息量——互信息,用于构造故障特征矩阵,最后由K最近邻分类算法(K-Nearest Neighbor,简称KNN算法)的识别结果验证该算法对实现轴承故障快速识别具有优势。
VMD奇异值和FCM的转子故障特征提取与识别
为了准确、有效地提取转子故障特征,提出了变分模态分解(VMD)和奇异值特征提取的方法,并采用模糊C均值聚类(FCM)进行转子故障识别。首先,利用分解精度高、模态混叠问题少的VMD算法进行振动信号分解,形成初始特征向量矩阵,然后对该向量矩阵进行奇异值分解,将求得奇异值作为故障特征向量,最后通过模糊C均值聚类形成聚类中心,并计算海明贴近度以实现不同工况下的转子故障分类。将此方法进行转子实验台振动数据验证,实验结果表明:该方法能够有效实现不同工况下转子故障信号的区分,取得了理想的故障诊断结果。
基于VKF-OT和DFA的齿轮时变状态特征提取方法
针对齿轮在时变工况下的振动具有非线性、非平稳的特性,提出Vold-Kalman阶比跟踪(Vold-Kalman filter based order tracking,简称VKF-OT)和去趋势波动分析(detrended fluctuation analysis,简称DFA)相结合的一种特征提取方法。该方法以齿轮转频和啮频作为VKF-OT的提取频率,获取任意时变工况下的两类阶比信号,减弱或消除转速变化所引起的频率调制干扰,通过求解复包络得到两种频率分量的精确幅值和相位以保留齿轮状态的瞬变信息。在此基础上,引入去趋势波动法分别处理原信号、转频和啮频阶比信号,消除负载变化所产生的幅值调制干扰,对比3种信号的双对数波动函数图,选定齿轮振动信号的特征向量。通过对齿轮不同工作状态下的150组振动信号进行实验,结果表明该方法所提取的故障特征可有效地区分任意时变工况下的齿轮早期局部微弱故障。