高速精密轧辊磨头实验平台机械系统的设计及其性能研究
为了给高速精密轧辊磨头磨削性能的研究提供实验条件,设计了一种供研究用的高速轧辊磨头实验平台。此实验平台通过模拟负载系统来代替磨床工件的进给系统,可缩短试验周期、降低实验成本。在此基础上,为了检验高速轧辊磨头实验平台的性能,利用有限元分析软件对实验平台的整体结构和关键零部件进行静力学及模态分析。分析结果表明:该高速精密轧辊磨头实验平台可以满足强度和刚度等性能要求。
自动液力变速器行星轮系的预应力模态分析
自动液力变速器中行星轮系的固有振动特性对变速器及相关零部件的正常工作具有重要影响。文中运用UG软件针对某新型自动液力变速器的第二组行星轮系P2进行了三维建模,并运用ANSYS Workbench软件对其进行了考虑接触非线性的静态应力分析,把得到的应力以附加刚度的形式叠加到系统的刚度矩阵上,对这种具有附加刚度的系统结构做线性模态分析,揭示出行星轮系的应力分布状况以及低阶振动频率和对应的模态振型。故可在行星轮系的设计过程中避开其工作频率,避免工作过程中发生共振,达到提高齿轮系统质量的目标。
材料匹配对高压轴向柱塞泵滑靴副干摩擦性能影响的研究
高压轴向柱塞泵滑靴副在高速、高压条件下工作,当接触面油膜失效时,转化为干摩擦,导致磨损严重。零件的材料匹配对滑靴副的抗磨损性能有着重要的影响。通过有限元分析法,对不同材料匹配,但工况相同的35MPa高压轴向柱塞泵滑靴副接触面进行了应力和温度分析。研究表明:选择合适弹性模量、密度小、泊松比小的滑靴材料与泊松比小,弹性模量大的斜盘材料匹配时,能获得良好的接触应力分布;选择密度、比热及导热率较大的斜盘材料对改善滑靴底部温升有显著作用。
表面微坑对高压轴向柱塞泵滑靴副油膜性能的影响
高压轴向柱塞泵滑靴副在油润滑条件下工作,零件的表面结构对接触面油膜性能有重要影响。选择锥形、圆柱形、方形3种不同形貌微坑开设于滑靴底部,探讨在高速高压工况下,当滑靴表面微坑形貌参数改变时,油膜承载能力及温升的变化规律。基于滑靴副静压润滑原理,利用有限元分析方法,研究在相同工况下,微坑形貌、面积率及深径比对35 MPa高压轴向柱塞泵滑靴副油膜压力与温度变化的影响。结果表明:锥形截面油膜承载能力最佳,在一定范围内,接触面平均压力随深径比的增加明显增大;方形表面在面积率小、深径比大时具有最小温升;合理倾斜微坑底面,优化表面形状,选择较大的深径比,能获得良好的油膜性能。
大型自动翻转机液压系统设计
自动翻转机是大型圆筒形零件在加工过程中经常用到的设备。针对翻转机大功率、高效、低噪声、高可靠性的要求,对翻转机液压系统进行功能分析,在此基础上设计翻转机液压系统回路。结果表明,通过对液压系统回路的合理设计,改善了液压系统的性能,提高了液压系统的可靠性,实现自动翻转机的快速、精确、稳定、智能控制。
基于遗传算法的装载机发动机与液力变矩器匹配优化分析
发动机与液力变矩器匹配的好坏直接影响车辆的使用性能.针对装载机的发动机和液力变矩器的匹配,分析其输入特性和输出特性,并对其工作参数进行数值分析.在此基础上,以液力变矩器的有效循环圆直径作为优化设计的设计 变量,运用遗传算法对发动机和液力变矩器的匹配进行优化设计.优化结果表明:优化后液力变矩器有效圆的直径从 0. 395上升到0. 428 ,在全功率和部分功率匹配时涡轮有效功率分别提高了23%和6. 5% ,启动工况时最大扭矩提高了2 3% . 由此可见通过优化设计能提升了装载机的动力性,对于装载机的设计、制造和使用都有重要的意义.
自动液力变速器高速开关阀动态仿真与优化
高速开关电磁阀的响应时间对自动液力变速器性能的影响很大为了减小开关阀的响应时间运用AMESim软件建立了动态性能仿真模型提出基于ITAE准则创建目标函数采用遗传算法寻优对阀的线圈匝数、工作行程等参数进行优化并分析了优化结果。研究结果表明:动态性能模型的仿真结果与性能检测试验数据相对比响应误差为3.3%仿真模型能够比较准确地描述开关阀的动态性能;经参数优化高速开关阀的响应时间缩短了38.16%满足了快速响应性能的要求。该研究为进一步提高自动液力变速器的性能提供了理论参考。
高速轧辊磨头集成供油平台电液控制系统的研发
为了满足国产高速轧辊磨头综合测试实验的要求通过分析国产数控轧辊磨床的现有技术针对高速轧辊磨头各类油膜润滑轴承以及磨头不同部位的润滑特点设计了一种高速轧辊磨头集成供油平台的液压控制系统。并对其PLC控制系统进行开发包括硬件PLC控制电路的设计及其软件的开发。调试结果表明:该高速轧辊磨头集成供油平台电液控制系统不仅自动化程度高而且能在不同供油压力与转速的情况下稳定运行从而为高速轧辊磨床的国产化提供强有力的实验条件支撑。
拔秆粉碎机液压系统流量分配特性仿真分析
为了合理分配拔秆粉碎机多个执行机构的流量,提出基于压力补偿原理的多执行机构流量分配方法,并对液压系统的流量分配特性进行了仿真分析。首先,针对拔秆粉碎机执行机构的特点,设计了定差减压阀与梭阀相配合的压力补偿回路,并对此流量分配方法进行了理论研究,然后,采用AMESim建立仿真模型,对液压系统的流量分配和抗流量饱和能力进行了分析。结果表明,该流量分配方法能够在负载大小不同的条件下实现有效的流量分配,具有良好的抗流量饱和能力。
重型AT换挡控制油压变化及稳定性的研究
为了改善和保证重型液力自动变速器的换挡品质,在分析重型液力自动变速器换挡液压控制系统工作原理的基础上,建立换挡回路油压控制数学模型,基于AMESim搭建仿真模型,并从占空比、换挡阀弹簧预紧力和阀口开口量等因素对换挡时离合器油压变化及稳定性展开研究。仿真结果显示:换挡时间约为1.6 s,在t=1~1.6 s期间,这些因素对离合器油压影响较大,而后离合器的油压仅受主油压调节而发生变化,t=3.2 s达到稳定压力,满足实际工作要求;同时仿真结果与理论分析相一致,验证了模型的正确性和有效性,为液力自动变速器换挡控制和装配提供一定的参考。