电磁与摩擦集成制动系统防抱死制动分层协调控制
为了深入研究电磁与摩擦集成制动系统防抱死控制机理,提高其在紧急制动下的防抱死控制性能,在建立电磁与摩擦集成防抱死制动模型的基础上,根据电磁制动与电子液压制动各自制动控制特性,提出了电磁与摩擦集成制动系统防抱死制动分层协调控制方法。在硬件在环仿真平台上验证了数学模型的有效性,并在模拟干燥沥青路面、冰雪路面以及对接路面环境下,对比研究了电磁与摩擦集成制动系统、高性能电子液压制动系统和低性能电子液压制动系统的防抱死制动性能。结果表明在防抱死控制过程中使用电磁制动取代低性能电子液压制动系统控制车轮最佳滑移率,仅使用低性能电子液压制动提供一定的制动强度,完全可以实现与高性能电子液压制动系统相同甚至更优的防抱死控制效果。
基于安全特性电子液压制动前后轴制动力分配改进方法
为提高电子液压制动安全性能,本文中对前后轴制动力分配方法进行了改进。首先研究ECE R13制动法规对汽车前后轴制动力分配的影响,然后对电子液压制动安全特性进行分析,得到如下结论电子液压制动中电机泵的作用频次与制动需液量成正比;输出相同的制动力矩的情况下,单独使用后轮制动器比单独使用前轮制动器需要更少的制动液体积;在低于某一制动强度时,共同使用前后轴制动器时制动需液量大于单独使用前轴制动器;利用单侧车轮的进/出液阀控制左右两侧车轮制动器实施制动,可以降低高速电磁阀的使用频次。最后基于上述结论提出了基于安全特性的电子液压制动的前后轴制动力分配改进方法,并进行NYCC循环工况的仿真。结果表明,与理想制动力分配方法相比,采用所提出的改进方法,电机泵和前轴进/出液阀的作用频次约降低50%,而后轴进/出液阀的...
电子液压制动系统的安全设计与匹配分析
针对电子液压制动系统的设计缺乏理论指导的问题,在建立电子液压制动系统数学模型的基础上,提出基于安全特性的电子液压制动系统匹配设计方法;通过试验验证所建立的数学模型的有效性,分析电子液压制动系统在普通制动和硬件失效下的制动性能。研究表明:基于安全特性考虑应保证在电机泵失效的情况下蓄能器仍能使车辆完成数次大强度制动;而电机泵的设计应兼顾期望的充液时间以及蓄能器失效下的保持车辆制动性能;备用制动回路作为电子液压制动系统系统的硬件冗余,要求其在蓄能器和电机泵均失效的情况下提供一定的制动能力。仿真分析表明:基于安全特性的电子液压制动系统匹配设计方法能够在正常情况和硬件失效的情况下均能保证车辆的制动安全性。
电子液压制动系统耗能特性影响因素分析
针对车辆电子液压制动系统存在的能量消耗问题,建立了电子液压制动系统的能耗数学模型,在此模型的基础上分析系统参数和零部件结构参数对电子液压制动系统耗能特性的影响.结果表明减小系统最高工作压力和制动轮缸活塞直径有利于降低电子液压制动系统的耗电量,而系统最低工作压力和蓄能器有效排量的改变对电子液压制动系统的耗电量影响不大.增加蓄能器充气压力、减小蓄能器有效排量以及制动轮缸活塞直径有利于缩小蓄能器体积.
-
共1页/4条