车用可调阻尼减振器参数优化分析及实验验证
为了提高汽车行驶过程中不同路面的平顺性和运行稳定性,在分析阻尼调节阀结构的基础上,设计了一种具有阻尼调节阀的液压减振器。该减振器中的阀芯在衔铁推动下发生运动,实现进出油口流量与压力调节,达到减振器呈现阻尼特性的效果。研究结果表明:改变激励电压并不会造成响应时间的明显变化。增大阀芯负载压差将引起阀芯上升时间增加并达到更长的响应时间。随着阻尼系数的提高,上升时间也发生了逐渐增加。当提高衔铁质量后,阀芯可以在更短时间内完成触动响应,阀芯需经过更长时间完成上升与响应过程。通过实验验证了该可调阻尼减振器设计满足目标阻尼的要求,对提高汽车运行舒适性具有很好的理论价值,且易于推广。
基于扰动前馈补偿的HMT换段离合器控制方法
液压机械传动装置(hydro-mechanical transmission,HMT)是一种机-液耦合的强非线性系统,在换段过程中存在外界负载扰动和建模误差等因素影响其换段品质。该研究在分析HMT组成及工作原理的基础上,建立了HMT换段过程动力学模型和线性二次型控制模型,提出一种基于扰动前馈补偿的换段离合器控制方法,借助扰动观测器估计HMT换段过程的总扰动,将扰动补偿增益引入控制器的前馈项,实现扰动前馈补偿,并设计了抑制换段过程扰动的控制器。仿真结果表明,与未采用扰动前馈补偿控制相比,扰动前馈补偿控制的扰动值最大降低了48.9%、冲击度降低了27.8%、滑摩功减少了29.6%、换段时间减少了15.3%。最后通过试验验证了所提方法在快速处理换段过程扰动的同时,可较好地提升HMT的换段品质。研究结果可为液压机械传动装置的工程应用提供参考。
生产率最高的拖拉机HMCVT变速控制及仿真分析
为了使拖拉机能够获取最高的生产率,以配备HMCVT的400马力拖拉机为研究实例,通过分析计算对变速器的变速比进行了优化,得出了在任意牵引力及相应目标车速条件下的HMCVT最优变速比。随后对HMCVT的生产率最高变速控制进行了分析,制定了变速器的换段逻辑和变速控制原理;并以变速器变速比和发动机转速为控制变量,建立了生产率最高的二元协同控制拖拉机HMCVT仿真模型。应用二维查表插值的方法控制变速比输入,以某大小牵引力及相应目标车速为条件,对最优变速比进行了仿真验证。仿真结果表明经过优化所得出的变速比能够使拖拉机输出较大的牵引功率,该优化计算方法具有一定的可行性。
一种新型液压机械无级变速器的传动特性研究
基于传统的单行星排、双行星排传动的液压机械无级变速器,提出了一种复合行星排传动的新型液压机械无级变速器方案。通过行星架固定法推导出了其前进方向无级变速段的速比特性,应用理论力学推导出了其输出转矩特性,计算出了其功率分流比特性。使用Matlab软件绘制了拖拉机速度及变速比随排量比变化特性图、转矩特性图、液压功率分流比特性图。研究结果表明,所设计的新型液压机械无级变速器可在0—68km·h^-1的速度实现无级变速,满足了拖拉机在不同工况下的输出转矩要求,多段液压机械无级变速器的功率分流比小于20%,实现了拖拉机的高效、大功率动力传动。通过实例计算验证了新型液压机械无级变速器传动的合理性,为拖拉机自动变速器的开发应用奠定了基础。