进口管壁面轴向开槽消除轴流泵特性曲线驼峰
当轴流泵在小流量工况下运行时,由于叶轮进口的冲角增大,导致在叶轮内产生脱流等不稳定流动结构,降低泵的水力性能。该文采用计算流体动力学分析方法对轴流泵内部流场进行了研究,结果表明:该轴流泵的特性曲线存在明显的驼峰区域,在0.3到0.61倍最优流量工况区间,轴流泵的扬程和效率明显下降。在临界失速工况下(0.61倍最优流量工况),叶片吸力面前缘靠近轮缘处及叶片尾缘靠近轮毂处均出现了脱流;在深度失速工况下(0.45倍最优流量工况),脱流进一步发展,并与来流共同作用形成稳定的涡旋结构,阻塞整个流道。为了提高轴流泵在小流量工况下的水力性能,引入一种轴流泵进口管开槽技术,分析其对轴流泵内部流场的影响及驼峰的改善作用。结果表明:在小流量工况下,轴向开槽可以减小叶轮进口环量和冲角,可以减小叶片背部的脱流,轴流泵的驼峰...
叶轮弧盘及锥盘型线对高比转速离心通风机性能的影响
为改善离心通风机的气动性能,该文以一高比转速离心通风机为研究对象,结合试验和全通道数值模拟研究了锥盘及4种不同弧盘叶轮对离心通风机性能的影响,通过对非定常流场及压力脉动信号的分析得到了前盘型线对高比转速离心通风机性能的影响机理。研究结果表明,随着比转速的增大,叶轮前盘型线对离心通风机效率的影响程度增大,比转速为73和120时,弧盘叶轮较锥盘叶轮效率分别提高5%和14.5%。高比转速离心通风机锥盘叶轮在靠近前盘处的流动分离现象过早,并一直延伸至叶轮出口,在无叶扩压器区域沿轴向出现环流,严重阻碍流体流入蜗壳。将锥盘改为弧盘后,叶片负荷和出口气流角增大,流动分离损失降低,出口压力脉动幅值降低。对前盘弧线进一步优化后,弧盘叶轮边界层损失和压力脉动进一步减小,在设计工况(38205.63m3/h)下效率较原弧盘叶轮提升了1%...
轴流泵端壁间隙流动特性的数值分析
采用CFD计算软件CFX11.0,基于标准的k—ε紊流模型和SIMPLEC算法,对带间隙的轴流泵的内部流场进行了数值模拟。研究和分析丁0、1、1.5、2和2.5mm五种不同径向间隙对轴流泵的能量特性的影响,并进行了性能预估。本次数值模拟捕捉到了叶顶间隙泄漏流动和间隙泄漏涡,并通过分析得出了间隙泄漏涡是由于间隙泄漏流与主流发生卷吸而形成的。
涡旋液泵内部非稳态流场的数值模拟
采用动网格技术对涡旋液泵内的非稳态流动进行了数值模拟,得到了泵在各个转角下的压力、速度、空泡体积分数,以及进出口流量和监控点的压力参数。结果表明,涡旋液泵内的流动是一种非稳态、非均匀,非对称的流动。动静圈的啮合间隙处因大压差和小流通面积而存在高速射流现象,并在啮合间隙下游出现负压区和空化。泵进口位置的偏移和动盘对腔外流体的推动使左右两个吸液腔的流动不对称,将造成涡盘受力的不平衡。在吸液即将结束时,因涡旋液泵对液体的挤压作用,在大约20°的转角范围内,泵的工作腔内出现极大幅值的压力脉动,严重危害泵的安全可靠运行。
转速对涡旋液泵空化性能的影响
基于空泡动力学和两相流理论,采用Schnerr-Sauer模型,运用动网格技术对涡旋式液泵不同转速下的空化特性进行了数值模拟,得到不同转角下流场内空化发生位置和强度随着转速的变化规律,以及气液相的分布情况。结果表明:涡旋液泵低转速时不易发生空化,随着转速的增加,空化加剧且多发生在啮合间隙处及吸液腔内,转角较大时在动盘外壁面处也有较为严重的空化发生;随着转速的增大,泵进口流量增大,由于空化的加剧效率降低。
-
共1页/5条