基于选区激光熔化增材制造技术的液压阀块流道的优化设计
受传统加工方式的限制,常用液压阀块中的流道多为直线型且主要以直角形式相交,直径不同流道在相交处截面面积发生突变,并且盲孔末端存在工艺容腔,导致阀块工作时压力损失大且不稳定.利用选区激光熔化技术可制备任意形状零件的优点,对液压阀块流道结构进行了优化设计.利用计算流体力学(CFD)对钻削方法和SLM方法制造的流道进行数值分析,并用不同方法制备出进出口截面面积不同的弯管实物进行测试验证.仿真结果与测试结果均表明,选区激光熔化制备的无工艺容腔、圆弧逐渐过渡的流道可以有效减小压力损失,且流道中流速越大,压力损失越小.
增材制造成形液压流道沿程损失研究
选区激光熔化(Selective Laser Melting,SLM)作为一种金属增材制造技术,克服了传统加工方式下的成形限制,为液压元件与系统的设计提供了更大的自由度。流道是液压元件与系统的重要组成部分,而目前成形的无支撑圆形流道往往具有较低的轮廓精度和较高的表面粗糙度,这对液压系统的能量损失影响很大。利用SLM技术成形了具有不同直径的水平流道,测量了轮廓精度和表面粗糙度,设计了沿程压力损失测量装置,实验后分析了沿程阻力系数、雷诺数和直径之间的关系。结果表明,随着直径的增大,成形轮廓相对误差减小;成形流道下表皮粗糙度较其他面更高;相同工况下,沿程压力损失比传统加工流道更大。
选区激光熔化铝合金的组织和力学性能
通过选区激光熔化(SLM)工艺成型AlSi10Mg试样,研究其显微组织和力学性能。采用某公司生产的AFS-M260选区激光熔化成型机打印AlSi10Mg试样,综合使用显微硬度仪、光学显微镜、扫描电镜、XRD衍射仪进行分析,得出其显微硬度、组织形貌、元素分布和物相组成。由于SLM独特的成型方式而引起共晶结构定向生长,使得试样微观组织在横纵方向呈现各向异性,但相同截面上组织从熔池边界到内部呈现梯度结构,可分为3个区域:粗晶区、热影响区、细晶区,各区域横纵截面对应的α-Al基体尺寸、平均共晶Si宽度、共晶组织含量均呈现下降趋势。试样的硬度显著大于传统铸态试样,但横纵截面相差不大。SLM成型得到的AlSi10Mg试样硬度性能极其优良,成型组织细小,这主要与SLM成型的高冷却速率相关。
金属增材制造工艺、材料及结构研究进展
金属增材制造技术相比于传统制造技术有很大的优势,已经在很多领域得到了应用。基于金属增材制造工艺、材料以及结构的研究现状,分析当前的研究热点以及发展趋势。结果表明:金属增材制造当前的研究热点是材料应用、仿真模拟、智能检测和热处理强化,而且质量评估没有统一的标准;金属增材制造未来发展的趋势是建立标准材料工艺数据库、多材料打印工艺研发、仿真优化模拟、智能化监测管理和热处理强化工艺研发。
选区激光熔化制备不同孔结构不锈钢冲击性能仿真分析
采用316L不锈钢粉末基于选区激光熔化技术(Selective Laser Melting,SLM)制备压缩试样,观测其宏观组织形貌,随后进行压缩实验,获得工程应力-应变曲线及材料参数;利用ABAQUS/STANDARD有限元分析模块模拟试样压缩过程,得出仿真工程应力-应变曲线,将其与实验工程应力-应变曲线比较,验证材料参数设置准确性;最后构建规则栅格孔结构模型与交错栅格孔结构模型,利用ABAQUS/EXPLICIT有限元分析模块模拟落体冲击实验与摆锤冲击实验。结果表明:相同宏观体积条件下,基于SLM制备交错栅格孔结构不锈钢材料在落体冲击实验中对冲击能的消耗高于规则栅格孔结构部件,而在摆锤冲击实验中冲击性能差异不显著。
-
共1页/5条