TensorFlow框架下的车削工件表面粗糙度预测方法
利用TensorFlow机器学习框架建立了前馈神经网络模型,以三个切削参数作为输入变量,分别是刀具切削深度ap、切削速度vc和进给量f,输出变量是表征工件表面粗糙度的三个指标,即轮廓算数平均偏差Ra、轮廓最大高度Ry或微观不平度十点高度Rz。利用数控车床加工数据对神经网络进行训练,训练好的网络可以用来预测工件的表面粗糙度。预测结果表明基于TensorFlow框架的表面粗糙度预测方法具有建模方便和精度高的特点,因此提出的方法对车削工艺的智能化编制有一定的参考价值。
橡胶减振器动刚度有限元数值预测方法研究
提出了一种基于有限元的橡胶减振器动刚度预测方法,对方法中的材料本构模型、有限元模型、动刚度预测流程进行了分析和研究。利用此方法对某惯导减振器进行预测,获得减振器动刚度和阻尼值,代入单自由度分析模型后预报出的动响应结果与试验结果基本一致。用该方法能捕捉到由于减振器刚度变化而引入的高频率共振峰,表明该方法具有更高的精度。
基于机器学习的汽车后视镜气动噪声预测方法
针对传统风洞试验、数值模拟等方法计算噪声值费时长、资源消耗大等问题,提出一种基于机器学习的气动噪声预测方法。以后视镜特征参数为数据集输入,对不同特征参数下的后视镜模型进行瞬态流场与声场联合仿真,将计算得到的总声压级值作为数据集输出,分别用不同数量的样本数据训练支持向量回归机,通过建立的预测模型对同一测试集进行预测得到总声压级预测值。结果表明,基于支持向量回归机的预测方法能得到与计算值误差较小的预测结果,在较少样本数据支撑下也具有较高的预测精度,可用于汽车后视镜气动噪声的预测。
CNC铣刀磨损状态的大数据分析与预测方法研究
为在铣切加工过程中预测铣刀的磨损状态以及时发现并更换将要磨钝的铣刀,以保障产品质量,运用传感器采集CNC铣床在加工过程中铣床及铣刀的振动信号数据,应用大数据方法研究CNC铣刀磨损状态的分析和预测方法。为保证铣刀磨损状态的识别精度、识别稳定性和分析模型的鲁棒性,采用小波包分解理论对铣床x、y、z三向振动信号数据进行降噪处理,提取时域特征和能量特征,筛选出与磨损状态相关性较大的34个特征。应用XGBoost算法建立铣刀磨损状态的数据分析模型,使用宏平均值评估模型性能,结合SMOTE技术对特征向量进行过采样,使各磨损状态类别样本均衡。借助公开的球头铣刀加工数据集对所提方法进行验证,实验结果表明:利用XGBoost算法能正确分析铣刀磨损状态的数据,能识别出铣刀磨损预警阶段。XGBoost算法的预测精度高、稳定性好、泛化能力强,易应...
焊接机器人特征参数预测方法的研究综述与展望
焊接机器人可大大改善工人劳动条件、提高生产效率,其特征工艺参数的合理选择是确保焊缝成形质量的关键。分析了焊接机器人焊接过程中关键特征工艺参数对焊接质量的影响,并对各种工艺参数的预测方法及其特点进行了分析和综述。对焊接机器人特征参数预测方法的发展趋势进行了展望,提出了未来的研究方向。
考虑能耗的多传感器融合加工表面粗糙度预测方法
目的提出一种考虑能耗的多传感器融合加工表面粗糙度预测方法,精确预测零件表面粗犍度。方法首先采集车削过程中的功率和振动信号,测量加工表面粗糙.度值,利用集成经验模态分解(Ensemble empirical mode decomposition,EEMD)和小波包分析提取振动信号的时域与频域特征,联合功率信号的时域特征、能耗特征与切削参数,构造联合多特征向量。然后采用核主成分分析(Kernel principal component analysis,KPCA)对联合多特征向量进行融合降维处理生成融合特征。最后将融合特征作为基于支持向量机(Support vectormachine,SVM)的表面粗糙.度预测模型的输入特征,并使用遗传算法(Genetic algorithm,GA)对SVM模型相关核参数进行优化以提高预测精度。结果预测得到的表面粗糙度平均相对误差为4.91%,最大误差为0.111um,预测时间为9.24s。与单传感器预测方法及多传感器联合特征领测方法相比,多传感...
-
共1页/6条