模糊PID控制的细长工件加工主动减振控制研究
细长工件加工过程中的自激振动会增大工件表面粗糙度,降低工件的加工精度。因此这里提出了一种新型的主动减振机构对细长工件车削过程中产生的振动进行隔离。通过分析细长工件加工主动减振系统的简化结构,建立减振系统以及电液执行器的动力学模型,构建细长工件加工主动减振系统,并根据主动减振系统利用模糊规则进行模糊推理,开发了模糊PID控制器,实现细长工件加工主动减振系统的有效控制。采用数学软件MATLAB对细长工件加工的被动减振系统、传统PID控制器和模糊PID控制器控制的主动减振系统进行仿真,结果显示,主动减振系统相比于被动减振系统能够较大降低工件振动幅度;采用模糊PID控制器控制的主动减振系统,具有振幅小、控制电压低及能耗低的特点,同时振动抑制率相比传统PID控制器提高约9%。因此,采用模糊PID控制器控制的细长工件车...
主动减振器结构参数优化设计
主动减振系统由3个以上减振器构成,其固有频率直接决定了系统隔振带宽,且减振器水平向隔振广泛采用摆机构。柔性杆直径及杆长是影响摆机构水平向刚度的主要几何参数。根据材料弹性变形理论建立了摆机构的水平向刚度模型及最大拉应力模型。在给定的负载质量范围内,以主动减振系统水平向固有频率与目标值的均方差最小作为优化目标,将许用拉应力和最大尺寸作为设计约束,应用序列二次规划法求解该非线性优化模型,得出摆机构的最优设计参数及对应的均方差。基于30准则,可估计主动减振系统的水平向固有频率分布范围。在许用固有频率范围约束下,得到摆机构参数的允许范围。实验结果表明:减振系统固有频率的测试值与理论分析值的差异小于10%;加入主动控制后,振动传递率的共振峰小于0dB,大于6Hz的振动传递率小于-20dB。
...
轴-壳体系统耦合振动控制原理分析及试验
螺旋桨脉动力是引起轴系—壳体振动的主要因素。基于频域模型,研究轴—壳系统耦合振动特性及参数影响,从原理上分析在推进轴系上施加控制力来抑制耦合系统振动的控制方法,并讨论基于自适应前馈控制策略的主动控制方案。采用自适应对消及归一化最小均方算法,在轴上施加纵向控制力,实时抵消脉动推力,降低轴系纵向振动,由此抑制由于轴系振动所引起的壳体振动。仿真结果表明:控制力施加位置对控制效果影响很小,不同轴承刚度对控制力大小的需求不同,刚度较小时误差收敛速度较慢,刚度达到一定程度以后收敛速度不变。通过轴—壳体试验系统对原理分析进行验证,结果也表明推力轴承刚度对轴系纵振频率的影响,所提出的控制方法能够有效地抑制壳体振动。
强振动环境下液压管道主动减振建模
针对在强振动环境下工作的液压管道,建立振动液压管道梁模型,并结合管道流固耦合横向振动模型建立管道的主动减振模型。运用特征线和差分计算方法求解该数学模型,并且研究主动振动相位差、频率、作用位置和幅值对管道振动的影响规律,得到各减振参数对管道最大幅值和最大应力的影响曲线。发现当振动相位差为π时能使管道的最大幅值和最大应力分别降低44.55%和39.69%,并且适当调整其他三个参数有更佳的减振效果。研究结果表明,使用主动减振方法能够有效减小管道的振动,为管道主动减振提供一定的理论参考。
-
共1页/4条