连续表面微透镜列阵元件检测
系统分析了连续表面微透镜列阵的几何参量和光学性能的检测方法和评价标准,针对典型的折射型聚焦列阵元件,给出其结构尺寸及光学性能的测试结果,两者结果一致.从而建立了一套通过测试元件的几何参量、加工误差及光学性能指标来综合评估微光学元件性能的方法.
MEMS微电子机械系统与流程工业自动化
在20世纪8 0年代,随着美国借助半导体集成电路制造技术研制成功微米级的硅微型静电电机而形成了微机械领域。这期间德国卡尔斯鲁厄原子核物理研究中心发明了LIGA技术(LIGA,LithographieGalvanofomung Abfomung),并制作出微加速度器、微型涡轮、微电机等多种微机械和微光学元件和系统。日本也研制出在硅衬底上制造几十微米大小的微连接铰链、弹簧、齿轮等构件。我国也于20世纪80年代末开展了微系统的研究工作。一个微传感器、微驱动器、微型机械(微型机器人)的研制热潮逐渐展开,到现在已经逐渐形成智能微系统的局面,而且科研以外,产业化已经形成,全球已有多家从事微传感器和系统的企业。
可用作分光元件的二元菲涅耳透镜
根据菲涅耳衍射理论,采用微光学元件制作技术,通过三次套刻制作出八位相台阶的二元离轴菲涅耳透镜.这种微型光学元件同时具有色散分光和聚焦功能,用来作为分光元件时,具有较高的光谱分辨本领和衍射效率.实验测出其衍射效率大于68%.
评价任意面型微光学元件制作误差的方法
提出一种可用于评价任意面型微光学元件制作误差的方法.利用泽尼克多项式描述微光学元件面型,针对元件检测过程中的旋转对准偏差,给出泽尼克系数随旋转角度的变化关系;以设计面型和实测面型之间的均方根偏差(RMS)为加工误差的评价指标,根据其相对于旋转角度的依赖曲线,最小的RMS即是加工误差.数值模拟结果表明,该方法可以将旋转对准偏差矫正,从而有效地评价了制作误差.该方法可应用于任意面型微光学元件的研制.
基于硅各向异性腐蚀的非球面微光学元件的制作
讨论了一种制作非球面微光学元件的新方法。此方法的关键步骤是将(100)硅在KOH∶H2O中的两步各向异性腐蚀。首先在硅衬底的掩模上开一组圆孔,圆孔的尺寸与最终的轮廓相对应。通过在硅衬底上腐蚀出一组凹球面状的微结构,一定的轮廓可以由一组这样的凹球面拼接而成。用这种方法可以简单高效地制作出很多用常规工艺难以加工的非球面、不规则的微光学元件。建立了描述此方法的模型,并进行了讨论分析。
-
共1页/5条